Cargando…
Epimerization and substrate gating by a TE domain in β-lactam antibiotic biosynthesis
Nonribosomal peptide synthetases (NRPSs) are versatile engines of bioactive natural product biosynthesis that function according to the multiple carrier thiotemplate mechanism. C-terminal thioesterase (TE) domains of these giant modular proteins typically catalyze product release by hydrolysis or ma...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961552/ https://www.ncbi.nlm.nih.gov/pubmed/24531841 http://dx.doi.org/10.1038/nchembio.1456 |
Sumario: | Nonribosomal peptide synthetases (NRPSs) are versatile engines of bioactive natural product biosynthesis that function according to the multiple carrier thiotemplate mechanism. C-terminal thioesterase (TE) domains of these giant modular proteins typically catalyze product release by hydrolysis or macrocylization. We now report an unprecedented, dual-function TE involved in nocardicin A biosynthesis, the paradigm monocyclic β-lactam antibiotic. Contrary to expectation, a stereodefined series of potential peptide substrates for the nocardicin TE domain failed to undergo hydrolysis. The stringent discrimination against peptide intermediates was dramatically overcome by prior monocyclic β-lactam formation at an L-seryl site. Kinetic data are interpreted such that the TE domain acts as a gatekeeper to hold the assembling peptide on an upstream domain until β-lactam formation takes place and then rapidly catalyzes epimerization, not previously observed as a TE catalytic function, and thioesterase cleavage to discharge a fully fledged pentapeptide β-lactam harboring nocardicin G, the universal precursor of the nocardicins. |
---|