Cargando…
Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy
Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961736/ https://www.ncbi.nlm.nih.gov/pubmed/24651823 http://dx.doi.org/10.1038/srep04424 |
_version_ | 1782308337687199744 |
---|---|
author | Ramachandran, Srinivasan Arce, Fernando Teran Patel, Nirav R. Quist, Arjan P. Cohen, Daniel A. Lal, Ratnesh |
author_facet | Ramachandran, Srinivasan Arce, Fernando Teran Patel, Nirav R. Quist, Arjan P. Cohen, Daniel A. Lal, Ratnesh |
author_sort | Ramachandran, Srinivasan |
collection | PubMed |
description | Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. |
format | Online Article Text |
id | pubmed-3961736 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Publishing Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39617362014-03-21 Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy Ramachandran, Srinivasan Arce, Fernando Teran Patel, Nirav R. Quist, Arjan P. Cohen, Daniel A. Lal, Ratnesh Sci Rep Article Membrane ion channels regulate key cellular functions and their activity is dependent on their 3D structure. Atomic force microscopy (AFM) images 3D structure of membrane channels placed on a solid substrate. Solid substrate prevents molecular transport through ion channels thus hindering any direct structure-function relationship analysis. Here we designed a ~70 nm nanopore to suspend a membrane, allowing fluidic access to both sides. We used these nanopores with AFM and total internal reflection fluorescence microscopy (TIRFM) for high resolution imaging and molecular transport measurement. Significantly, membranes over the nanopore were stable for repeated AFM imaging. We studied structure-activity relationship of gap junction hemichannels reconstituted in lipid bilayers. Individual hemichannels in the membrane overlying the nanopore were resolved and transport of hemichannel-permeant LY dye was visualized when the hemichannel was opened by lowering calcium in the medium. This integrated technique will allow direct structure-permeability relationship of many ion channels and receptors. Nature Publishing Group 2014-03-21 /pmc/articles/PMC3961736/ /pubmed/24651823 http://dx.doi.org/10.1038/srep04424 Text en Copyright © 2014, Macmillan Publishers Limited. All rights reserved http://creativecommons.org/licenses/by-nc-nd/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-nd/3.0/ |
spellingShingle | Article Ramachandran, Srinivasan Arce, Fernando Teran Patel, Nirav R. Quist, Arjan P. Cohen, Daniel A. Lal, Ratnesh Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title | Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title_full | Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title_fullStr | Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title_full_unstemmed | Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title_short | Structure and Permeability of Ion-channels by Integrated AFM and Waveguide TIRF Microscopy |
title_sort | structure and permeability of ion-channels by integrated afm and waveguide tirf microscopy |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3961736/ https://www.ncbi.nlm.nih.gov/pubmed/24651823 http://dx.doi.org/10.1038/srep04424 |
work_keys_str_mv | AT ramachandransrinivasan structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy AT arcefernandoteran structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy AT patelniravr structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy AT quistarjanp structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy AT cohendaniela structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy AT lalratnesh structureandpermeabilityofionchannelsbyintegratedafmandwaveguidetirfmicroscopy |