Cargando…

Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa

There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-ac...

Descripción completa

Detalles Bibliográficos
Autores principales: Scior, Thomas, Alexander, Christian, Zaehringer, Ulrich
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Research Network of Computational and Structural Biotechnology (RNCSB) Organization 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962135/
https://www.ncbi.nlm.nih.gov/pubmed/24688705
http://dx.doi.org/10.5936/csbj.201302012
_version_ 1782308388810522624
author Scior, Thomas
Alexander, Christian
Zaehringer, Ulrich
author_facet Scior, Thomas
Alexander, Christian
Zaehringer, Ulrich
author_sort Scior, Thomas
collection PubMed
description There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS) in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism) but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli-type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564) acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species.
format Online
Article
Text
id pubmed-3962135
institution National Center for Biotechnology Information
language English
publishDate 2013
publisher Research Network of Computational and Structural Biotechnology (RNCSB) Organization
record_format MEDLINE/PubMed
spelling pubmed-39621352014-03-31 Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa Scior, Thomas Alexander, Christian Zaehringer, Ulrich Comput Struct Biotechnol J Mini Reviews There is literature evidence gathered throughout the last two decades reflecting unexpected species differences concerning the immune response to lipid IVa which provides the opportunity to gain more detailed insight by the molecular modeling approach described in this study. Lipid IVa is a tetra-acylated precursor of lipid A in the biosynthesis of lipopolysaccharide (LPS) in Gram-negative bacteria. Lipid A of the prototypic E. coli-type is a hexa-acylated structure that acts as an agonist in all tested mammalian species by innate immunorecognition via the Toll-like receptor 4 (TLR4)/myeloid differentiation factor 2 (MD-2) receptor complex. In contrast, lipid IVa is proinflammatory in mouse cells (agonism) but it remains inactive to human macrophages and even antagonizes the action of potent agonists like E. coli-type lipid A. This particular ambivalent activity profile of lipid IVa has been confirmed in other mammalian species: in equine cells Lipid IVa also acts in a weak agonistic manner, whereas being inactive and antagonizing the lipid A-induced activation of canine TLR4/MD-2. Intriguingly, the respective TLR4 amino acid sequences of the latter species are more identical to the human (67%, 68%) than to the murine (62%, 58%) ortholog. In order to address the unpaired activity-sequence dualism for human, murine, canine and equine species regarding the activity of lipid IVa as compared to LPS and lipid A and, we review the literature and computationally pinpoint the differential biological effects of lipid IVa versus LPS and lipid A to specific amino acid residues. In contrast to lipid IVa the structurally related synthetic compound Eritoran (E5564) acts consistently in an antagonistic manner in these mammalian species and serves as a reference ligand for molecular modeling in this study. The combined evaluation of data sets provided by prior studies and in silico homology mapping of differential residues of TLR4/MD-2 complexes lends detailed insight into the driving forces of the characteristic binding modes of the lipid A domain in LPS and the precursor structure lipid IVa to the receptor complex in individual mammalian species. Research Network of Computational and Structural Biotechnology (RNCSB) Organization 2013-04-05 /pmc/articles/PMC3962135/ /pubmed/24688705 http://dx.doi.org/10.5936/csbj.201302012 Text en © Scior and Alexander. http://creativecommons.org/licenses/by/3.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly cited.
spellingShingle Mini Reviews
Scior, Thomas
Alexander, Christian
Zaehringer, Ulrich
Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title_full Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title_fullStr Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title_full_unstemmed Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title_short Reviewing and identifying amino acids of human, murine, canine and equine TLR4 / MD-2 receptor complexes conferring endotoxic innate immunity activation by LPS/lipid A, or antagonistic effects by Eritoran, in contrast to species-dependent modulation by lipid IVa
title_sort reviewing and identifying amino acids of human, murine, canine and equine tlr4 / md-2 receptor complexes conferring endotoxic innate immunity activation by lps/lipid a, or antagonistic effects by eritoran, in contrast to species-dependent modulation by lipid iva
topic Mini Reviews
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3962135/
https://www.ncbi.nlm.nih.gov/pubmed/24688705
http://dx.doi.org/10.5936/csbj.201302012
work_keys_str_mv AT sciorthomas reviewingandidentifyingaminoacidsofhumanmurinecanineandequinetlr4md2receptorcomplexesconferringendotoxicinnateimmunityactivationbylpslipidaorantagonisticeffectsbyeritoranincontrasttospeciesdependentmodulationbylipidiva
AT alexanderchristian reviewingandidentifyingaminoacidsofhumanmurinecanineandequinetlr4md2receptorcomplexesconferringendotoxicinnateimmunityactivationbylpslipidaorantagonisticeffectsbyeritoranincontrasttospeciesdependentmodulationbylipidiva
AT zaehringerulrich reviewingandidentifyingaminoacidsofhumanmurinecanineandequinetlr4md2receptorcomplexesconferringendotoxicinnateimmunityactivationbylpslipidaorantagonisticeffectsbyeritoranincontrasttospeciesdependentmodulationbylipidiva