Cargando…
Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis
Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in...
Autores principales: | , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963924/ https://www.ncbi.nlm.nih.gov/pubmed/24664279 http://dx.doi.org/10.1371/journal.pone.0092586 |
_version_ | 1782308564013940736 |
---|---|
author | Mishra, Ritu Karande, Anjali A. |
author_facet | Mishra, Ritu Karande, Anjali A. |
author_sort | Mishra, Ritu |
collection | PubMed |
description | Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2α and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery. |
format | Online Article Text |
id | pubmed-3963924 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39639242014-03-27 Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis Mishra, Ritu Karande, Anjali A. PLoS One Research Article Abrin from Abrus precatorius plant is a potent protein synthesis inhibitor and induces apoptosis in cells. However, the relationship between inhibition of protein synthesis and apoptosis is not well understood. Inhibition of protein synthesis by abrin can lead to accumulation of unfolded protein in the endoplasmic reticulum causing ER stress. The observation of phosphorylation of eukaryotic initiation factor 2α and upregulation of CHOP (CAAT/enhancer binding protein (C/EBP) homologous protein), important players involved in ER stress signaling by abrin, suggested activation of ER stress in the cells. ER stress is also known to induce apoptosis via stress kinases such as p38 MAPK and JNK. Activation of both the pathways was observed upon abrin treatment and found to be upstream of the activation of caspases. Moreover, abrin-induced apoptosis was found to be dependent on p38 MAPK but not JNK. We also observed that abrin induced the activation of caspase-2 and caspase-8 and triggered Bid cleavage leading to mitochondrial membrane potential loss and thus connecting the signaling events from ER stress to mitochondrial death machinery. Public Library of Science 2014-03-24 /pmc/articles/PMC3963924/ /pubmed/24664279 http://dx.doi.org/10.1371/journal.pone.0092586 Text en © 2014 Mishra, Karande http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Mishra, Ritu Karande, Anjali A. Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title | Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title_full | Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title_fullStr | Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title_full_unstemmed | Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title_short | Endoplasmic Reticulum Stress-Mediated Activation of p38 MAPK, Caspase-2 and Caspase-8 Leads to Abrin-Induced Apoptosis |
title_sort | endoplasmic reticulum stress-mediated activation of p38 mapk, caspase-2 and caspase-8 leads to abrin-induced apoptosis |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3963924/ https://www.ncbi.nlm.nih.gov/pubmed/24664279 http://dx.doi.org/10.1371/journal.pone.0092586 |
work_keys_str_mv | AT mishraritu endoplasmicreticulumstressmediatedactivationofp38mapkcaspase2andcaspase8leadstoabrininducedapoptosis AT karandeanjalia endoplasmicreticulumstressmediatedactivationofp38mapkcaspase2andcaspase8leadstoabrininducedapoptosis |