Cargando…

The proapoptotic BH3-only proteins Bim and Puma are downstream of endoplasmic reticulum and mitochondrial oxidative stress in pancreatic islets in response to glucotoxicity

Apoptosis of pancreatic beta cells is a feature of type 2 diabetes and its prevention may have therapeutic benefit. High glucose concentrations induce apoptosis of islet cells, and this requires the proapoptotic Bcl-2 homology domain 3 (BH3)-only proteins Bim and Puma. We studied the stress pathways...

Descripción completa

Detalles Bibliográficos
Autores principales: Wali, J A, Rondas, D, McKenzie, M D, Zhao, Y, Elkerbout, L, Fynch, S, Gurzov, E N, Akira, S, Mathieu, C, Kay, T W H, Overbergh, L, Strasser, A, Thomas, H E
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3973197/
https://www.ncbi.nlm.nih.gov/pubmed/24625983
http://dx.doi.org/10.1038/cddis.2014.88
Descripción
Sumario:Apoptosis of pancreatic beta cells is a feature of type 2 diabetes and its prevention may have therapeutic benefit. High glucose concentrations induce apoptosis of islet cells, and this requires the proapoptotic Bcl-2 homology domain 3 (BH3)-only proteins Bim and Puma. We studied the stress pathways induced by glucotoxicity in beta cells that result in apoptosis. High concentrations of glucose or ribose increased expression of the transcription factor CHOP (C/EBP homologous protein) but not endoplasmic reticulum (ER) chaperones, indicating activation of proapoptotic ER stress signaling. Inhibition of ER stress prevented ribose-induced upregulation of Chop and Puma mRNA, and partially protected islets from glucotoxicity. Loss of Bim or Puma partially protected islets from the canonical ER stressor thapsigargin. The antioxidant N-acetyl-cysteine also partially protected islets from glucotoxicity. Islets deficient in both Bim and Puma, but not Bim or Puma alone, were significantly protected from killing induced by the mitochondrial reactive oxygen species donor rotenone. Our data demonstrate that high concentrations of glucose induce ER and oxidative stress, which causes cell death mediated by Bim and Puma. We observed significantly higher Bim and Puma mRNA in islets of human donors with type 2 diabetes. This indicates that inhibition of Bim and Puma, or their inducers, may prevent beta-cell destruction in type 2 diabetes.