Cargando…

Perineural Dexmedetomidine Attenuates Inflammation in Rat Sciatic Nerve via the NF-κB Pathway

Recent studies have shown that dexmedetomidine exerts an anti-inflammatory effect by reducing serum levels of inflammatory factors, however, the up-stream mechanism is still unknown. The transcription factor NF-κB enters the nucleus and promotes the transcription of its target genes, including those...

Descripción completa

Detalles Bibliográficos
Autores principales: Huang, Yan, Lu, Yi, Zhang, Lei, Yan, Jia, Jiang, Jue, Jiang, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Molecular Diversity Preservation International (MDPI) 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3975383/
https://www.ncbi.nlm.nih.gov/pubmed/24663080
http://dx.doi.org/10.3390/ijms15034049
Descripción
Sumario:Recent studies have shown that dexmedetomidine exerts an anti-inflammatory effect by reducing serum levels of inflammatory factors, however, the up-stream mechanism is still unknown. The transcription factor NF-κB enters the nucleus and promotes the transcription of its target genes, including those encoding the pro-inflammatory cytokines IL-6 and TNF-α. In this study, we established a rat model that simulates a clinical surgical procedure to investigate the anti-inflammatory effect of perineural administration of dexmedetomidine and the underlying mechanism. Dexmedetomidine reduced the sciatic nerve levels of IL-6 and TNF-α at both the mRNA and protein level. Dexmedetomidine also inhibited the translocation of activated NF-κB to the nucleus and the binding activity of NF-κB. The anti-inflammatory effect is confirmed to be dose-dependent. Finally, pyrrolidine dithiocarbamate also reduced the levels of IL-6 and TNF-α and the activation of NF-κB. In conclusion, dexmedetomidine inhibited the nuclear translocation and binding activity of activated NF-κB, thus reducing inflammatory cytokines.