Cargando…
Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy
We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of Ca(V)3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976247/ https://www.ncbi.nlm.nih.gov/pubmed/24705276 http://dx.doi.org/10.1371/journal.pone.0091467 |
_version_ | 1782310259104153600 |
---|---|
author | Obradovic, Aleksandar Lj. Hwang, Sung Mi Scarpa, Joseph Hong, Sung Jun Todorovic, Slobodan M. Jevtovic-Todorovic, Vesna |
author_facet | Obradovic, Aleksandar Lj. Hwang, Sung Mi Scarpa, Joseph Hong, Sung Jun Todorovic, Slobodan M. Jevtovic-Todorovic, Vesna |
author_sort | Obradovic, Aleksandar Lj. |
collection | PubMed |
description | We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of Ca(V)3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical peripherally acting T-channel blocker mibefradil to examine the role of Ca(V)3.2 T-channels as pharmacological targets for treatment of painful PDN. When administered intraperitoneally (i.p.), at clinically relevant doses, mibefradil effectively alleviated heat, cold and mechanical hypersensitivities in STZ-treated diabetic rats in a dose-dependent manner. We also found that Ca(V)3.2 antisense (AS)-treated diabetic rats exhibit a significant decrease in painful PDN compared with mismatch antisense (MIS)-treated diabetic rats. Co-treatment with mibefradil (9 mg/kg i.p.) resulted in reversal of heat, cold and mechanical hypersensitivity in MIS-treated but not in AS-treated diabetic rats, suggesting that mibefradil and Ca(V)3.2 AS share the same cellular target. Using patch-clamp recordings from acutely dissociated DRG neurons, we demonstrated that mibefradil similarly blocked T-currents in diabetic and healthy rats in a voltage-dependent manner by stabilizing inactive states of T-channels. We conclude that antihyperalgesic and antiallodynic effects of mibefradil in PDN are at least partly mediated by inhibition of Ca(V)3.2 channels in peripheral nociceptors. Hence, peripherally acting voltage-dependent T-channel blockers could be very useful in the treatment of painful symptoms of PDN. |
format | Online Article Text |
id | pubmed-3976247 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-39762472014-04-08 Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy Obradovic, Aleksandar Lj. Hwang, Sung Mi Scarpa, Joseph Hong, Sung Jun Todorovic, Slobodan M. Jevtovic-Todorovic, Vesna PLoS One Research Article We recently showed that streptozotocin (STZ) injections in rats lead to the development of painful peripheral diabetic neuropathy (PDN) accompanied by enhancement of Ca(V)3.2 T-type calcium currents (T-currents) and hyperexcitability in dorsal root ganglion (DRG) neurons. Here we used the classical peripherally acting T-channel blocker mibefradil to examine the role of Ca(V)3.2 T-channels as pharmacological targets for treatment of painful PDN. When administered intraperitoneally (i.p.), at clinically relevant doses, mibefradil effectively alleviated heat, cold and mechanical hypersensitivities in STZ-treated diabetic rats in a dose-dependent manner. We also found that Ca(V)3.2 antisense (AS)-treated diabetic rats exhibit a significant decrease in painful PDN compared with mismatch antisense (MIS)-treated diabetic rats. Co-treatment with mibefradil (9 mg/kg i.p.) resulted in reversal of heat, cold and mechanical hypersensitivity in MIS-treated but not in AS-treated diabetic rats, suggesting that mibefradil and Ca(V)3.2 AS share the same cellular target. Using patch-clamp recordings from acutely dissociated DRG neurons, we demonstrated that mibefradil similarly blocked T-currents in diabetic and healthy rats in a voltage-dependent manner by stabilizing inactive states of T-channels. We conclude that antihyperalgesic and antiallodynic effects of mibefradil in PDN are at least partly mediated by inhibition of Ca(V)3.2 channels in peripheral nociceptors. Hence, peripherally acting voltage-dependent T-channel blockers could be very useful in the treatment of painful symptoms of PDN. Public Library of Science 2014-04-04 /pmc/articles/PMC3976247/ /pubmed/24705276 http://dx.doi.org/10.1371/journal.pone.0091467 Text en © 2014 Obradovic et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Obradovic, Aleksandar Lj. Hwang, Sung Mi Scarpa, Joseph Hong, Sung Jun Todorovic, Slobodan M. Jevtovic-Todorovic, Vesna Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title | Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title_full | Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title_fullStr | Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title_full_unstemmed | Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title_short | Ca(V)3.2 T-Type Calcium Channels in Peripheral Sensory Neurons Are Important for Mibefradil-Induced Reversal of Hyperalgesia and Allodynia in Rats with Painful Diabetic Neuropathy |
title_sort | ca(v)3.2 t-type calcium channels in peripheral sensory neurons are important for mibefradil-induced reversal of hyperalgesia and allodynia in rats with painful diabetic neuropathy |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3976247/ https://www.ncbi.nlm.nih.gov/pubmed/24705276 http://dx.doi.org/10.1371/journal.pone.0091467 |
work_keys_str_mv | AT obradovicaleksandarlj cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy AT hwangsungmi cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy AT scarpajoseph cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy AT hongsungjun cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy AT todorovicslobodanm cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy AT jevtovictodorovicvesna cav32ttypecalciumchannelsinperipheralsensoryneuronsareimportantformibefradilinducedreversalofhyperalgesiaandallodyniainratswithpainfuldiabeticneuropathy |