Cargando…

In vivo reprogramming of pancreatic acinar cells to three islet endocrine subtypes

Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin(+) β-cells, glucagon(+) α-cells, and soma...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Weida, Nakanishi, Mio, Zumsteg, Adrian, Shear, Matthew, Wright, Christopher, Melton, Douglas A, Zhou, Qiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: eLife Sciences Publications, Ltd 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3977343/
https://www.ncbi.nlm.nih.gov/pubmed/24714494
http://dx.doi.org/10.7554/eLife.01846
Descripción
Sumario:Direct lineage conversion of adult cells is a promising approach for regenerative medicine. A major challenge of lineage conversion is to generate specific cell subtypes. The pancreatic islets contain three major hormone-secreting endocrine subtypes: insulin(+) β-cells, glucagon(+) α-cells, and somatostatin(+) δ-cells. We previously reported that a combination of three transcription factors, Ngn3, Mafa, and Pdx1, directly reprograms pancreatic acinar cells to β-cells. We now show that acinar cells can be converted to δ-like and α-like cells by Ngn3 and Ngn3+Mafa respectively. Thus, three major islet endocrine subtypes can be derived by acinar reprogramming. Ngn3 promotes establishment of a generic endocrine state in acinar cells, and also promotes δ-specification in the absence of other factors. δ-specification is in turn suppressed by Mafa and Pdx1 during α- and β-cell induction. These studies identify a set of defined factors whose combinatorial actions reprogram acinar cells to distinct islet endocrine subtypes in vivo. DOI: http://dx.doi.org/10.7554/eLife.01846.001