Cargando…
miR-31 controls osteoclast formation and bone resorption by targeting RhoA
INTRODUCTION: Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978447/ https://www.ncbi.nlm.nih.gov/pubmed/24004633 http://dx.doi.org/10.1186/ar4282 |
_version_ | 1782310567041564672 |
---|---|
author | Mizoguchi, Fumitaka Murakami, Yousuke Saito, Tetsuya Miyasaka, Nobuyuki Kohsaka, Hitoshi |
author_facet | Mizoguchi, Fumitaka Murakami, Yousuke Saito, Tetsuya Miyasaka, Nobuyuki Kohsaka, Hitoshi |
author_sort | Mizoguchi, Fumitaka |
collection | PubMed |
description | INTRODUCTION: Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts. METHODS: miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3. RESULTS: miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition. CONCLUSIONS: miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA. |
format | Online Article Text |
id | pubmed-3978447 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39784472014-04-09 miR-31 controls osteoclast formation and bone resorption by targeting RhoA Mizoguchi, Fumitaka Murakami, Yousuke Saito, Tetsuya Miyasaka, Nobuyuki Kohsaka, Hitoshi Arthritis Res Ther Research Article INTRODUCTION: Increased activity of osteoclasts is responsible for bone loss and joint destruction in rheumatoid arthritis. For osteoclast development and bone resorption activity, cytoskeletal organization must be properly regulated. MicroRNAs (miRNAs) are endogenous small noncoding RNAs that suppress expression of their target genes. This study was conducted to identify crucial miRNAs to control osteoclasts. METHODS: miRNA expression in the bone marrow-derived macrophages (BMM) with or without receptor activator of nuclear factor κB ligand (RANKL) stimulation was analyzed by miRNA array. To examine the role of specific miRNAs in osteoclast formation, bone resorption activity and actin ring formation, the BMM were retrovirally transduced with miRNA antagomirs. To confirm whether the suppressive effects on osteoclastogenesis by miR-31 inhibition were mediated by targeting RhoA, osteoclast formation was analyzed in the presence of the RhoA inhibitor, exoenzyme C3. RESULTS: miR-31 was identified as one of the highly upregulated miRNAs during osteoclast development under RANKL stimulation. Inhibition of miR-31 by specific antagomirs suppressed the RANKL-induced formation of osteoclasts and bone resorption. Phalloidin staining of osteoclasts revealed that actin ring formation at the cell periphery was severely impaired by miR-31 inhibition, and clusters of small ringed podosomes were observed instead. In these osteoclasts, expression of RhoA, one of the miR-31 target genes, was upregulated by miR-31 inhibition in spite of the impaired osteoclastogenesis. Treatment with the RhoA inhibitor, exoenzyme C3, rescued the osteoclastogenesis impaired by miR-31 inhibition. CONCLUSIONS: miR-31 controls cytoskeleton organization in osteoclasts for optimal bone resorption activity by regulating the expression of RhoA. BioMed Central 2013 2013-09-03 /pmc/articles/PMC3978447/ /pubmed/24004633 http://dx.doi.org/10.1186/ar4282 Text en Copyright © 2013 Mizoguchi et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Mizoguchi, Fumitaka Murakami, Yousuke Saito, Tetsuya Miyasaka, Nobuyuki Kohsaka, Hitoshi miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title | miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title_full | miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title_fullStr | miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title_full_unstemmed | miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title_short | miR-31 controls osteoclast formation and bone resorption by targeting RhoA |
title_sort | mir-31 controls osteoclast formation and bone resorption by targeting rhoa |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978447/ https://www.ncbi.nlm.nih.gov/pubmed/24004633 http://dx.doi.org/10.1186/ar4282 |
work_keys_str_mv | AT mizoguchifumitaka mir31controlsosteoclastformationandboneresorptionbytargetingrhoa AT murakamiyousuke mir31controlsosteoclastformationandboneresorptionbytargetingrhoa AT saitotetsuya mir31controlsosteoclastformationandboneresorptionbytargetingrhoa AT miyasakanobuyuki mir31controlsosteoclastformationandboneresorptionbytargetingrhoa AT kohsakahitoshi mir31controlsosteoclastformationandboneresorptionbytargetingrhoa |