Cargando…
The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes
INTRODUCTION: Extracellular ATP (eATP) is released by articular chondrocytes under physiological and pathological conditions. High eATP levels cause pathologic calcification, damage cartilage, and mediate pain. We recently showed that stable over-expression of the progressive ankylosis gene product,...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978574/ https://www.ncbi.nlm.nih.gov/pubmed/24286344 http://dx.doi.org/10.1186/ar4337 |
_version_ | 1782310594091679744 |
---|---|
author | Rosenthal, Ann K Gohr, Claudia M Mitton-Fitzgerald, Elizabeth Lutz, Megan K Dubyak, George R Ryan, Lawrence M |
author_facet | Rosenthal, Ann K Gohr, Claudia M Mitton-Fitzgerald, Elizabeth Lutz, Megan K Dubyak, George R Ryan, Lawrence M |
author_sort | Rosenthal, Ann K |
collection | PubMed |
description | INTRODUCTION: Extracellular ATP (eATP) is released by articular chondrocytes under physiological and pathological conditions. High eATP levels cause pathologic calcification, damage cartilage, and mediate pain. We recently showed that stable over-expression of the progressive ankylosis gene product, ANK, increased chondrocyte eATP levels, but the mechanisms of this effect remained unexplored. The purpose of this work was to further investigate mechanisms of eATP efflux in primary articular chondrocytes and to better define the role of ANK in this process. METHODS: We measured eATP levels using a bioluminescence-based assay in adult porcine articular chondrocyte media with or without a 10 minute exposure to hypotonic stress. siRNAs for known ATP membrane transporters and pharmacologic inhibitors of ATP egress pathways were used to identify participants involved in chondrocyte eATP release. RESULTS: eATP levels increased after exposure to hypotonic media in a calcium-dependent manner in monolayer and 3-dimensional agarose gel cultures (p < 0.001). A potent transient receptor potential vanilloid 4 (TRPV4) agonist mimicked the effects of hypotonic media. ANK siRNA suppressed basal (p < 0.01) and hypotonically-stressed (p < 0.001) ATP levels. This effect was not mediated by altered extracellular pyrophosphate (ePPi) levels, and was mimicked by the ANK inhibitor, probenecid (p < 0.001). The P2X7/4 receptor inhibitor Brilliant Blue G also suppressed eATP efflux induced by hypotonic media (p < 0.001), while ivermectin, a P2X4 receptor stimulant, increased eATP levels (p < 0.001). Pharmacologic inhibitors of hemichannels, maxianion channels and other volume-sensitive eATP efflux pathways did not suppress eATP levels. CONCLUSIONS: These findings implicate ANK and P2X7/4 receptors in chondrocyte eATP efflux. Understanding the mechanisms of eATP efflux may result in novel therapies for calcium crystal arthritis and osteoarthritis. |
format | Online Article Text |
id | pubmed-3978574 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2013 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39785742014-04-09 The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes Rosenthal, Ann K Gohr, Claudia M Mitton-Fitzgerald, Elizabeth Lutz, Megan K Dubyak, George R Ryan, Lawrence M Arthritis Res Ther Research Article INTRODUCTION: Extracellular ATP (eATP) is released by articular chondrocytes under physiological and pathological conditions. High eATP levels cause pathologic calcification, damage cartilage, and mediate pain. We recently showed that stable over-expression of the progressive ankylosis gene product, ANK, increased chondrocyte eATP levels, but the mechanisms of this effect remained unexplored. The purpose of this work was to further investigate mechanisms of eATP efflux in primary articular chondrocytes and to better define the role of ANK in this process. METHODS: We measured eATP levels using a bioluminescence-based assay in adult porcine articular chondrocyte media with or without a 10 minute exposure to hypotonic stress. siRNAs for known ATP membrane transporters and pharmacologic inhibitors of ATP egress pathways were used to identify participants involved in chondrocyte eATP release. RESULTS: eATP levels increased after exposure to hypotonic media in a calcium-dependent manner in monolayer and 3-dimensional agarose gel cultures (p < 0.001). A potent transient receptor potential vanilloid 4 (TRPV4) agonist mimicked the effects of hypotonic media. ANK siRNA suppressed basal (p < 0.01) and hypotonically-stressed (p < 0.001) ATP levels. This effect was not mediated by altered extracellular pyrophosphate (ePPi) levels, and was mimicked by the ANK inhibitor, probenecid (p < 0.001). The P2X7/4 receptor inhibitor Brilliant Blue G also suppressed eATP efflux induced by hypotonic media (p < 0.001), while ivermectin, a P2X4 receptor stimulant, increased eATP levels (p < 0.001). Pharmacologic inhibitors of hemichannels, maxianion channels and other volume-sensitive eATP efflux pathways did not suppress eATP levels. CONCLUSIONS: These findings implicate ANK and P2X7/4 receptors in chondrocyte eATP efflux. Understanding the mechanisms of eATP efflux may result in novel therapies for calcium crystal arthritis and osteoarthritis. BioMed Central 2013 2013-10-17 /pmc/articles/PMC3978574/ /pubmed/24286344 http://dx.doi.org/10.1186/ar4337 Text en Copyright © 2013 Rosenthal et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Article Rosenthal, Ann K Gohr, Claudia M Mitton-Fitzgerald, Elizabeth Lutz, Megan K Dubyak, George R Ryan, Lawrence M The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title | The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title_full | The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title_fullStr | The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title_full_unstemmed | The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title_short | The progressive ankylosis gene product ANK regulates extracellular ATP levels in primary articular chondrocytes |
title_sort | progressive ankylosis gene product ank regulates extracellular atp levels in primary articular chondrocytes |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3978574/ https://www.ncbi.nlm.nih.gov/pubmed/24286344 http://dx.doi.org/10.1186/ar4337 |
work_keys_str_mv | AT rosenthalannk theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT gohrclaudiam theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT mittonfitzgeraldelizabeth theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT lutzmegank theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT dubyakgeorger theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT ryanlawrencem theprogressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT rosenthalannk progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT gohrclaudiam progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT mittonfitzgeraldelizabeth progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT lutzmegank progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT dubyakgeorger progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes AT ryanlawrencem progressiveankylosisgeneproductankregulatesextracellularatplevelsinprimaryarticularchondrocytes |