Cargando…

Skp2 suppresses apoptosis in Rb1 deficient tumors by limiting E2F1 activity

One mechanism of tumor suppression by pRb is repressing E2F1. Hence, E2f1 deletion diminishes tumorigenesis following Rb1 loss. However, E2F1 promotes both proliferation and apoptosis. It therefore remains unclear how de-repressed E2F1 promotes tumorigenesis. Another mechanism of pRb function is rep...

Descripción completa

Detalles Bibliográficos
Autores principales: Lu, Zhonglei, Bauzon, Frederick, Fu, Hao, Cui, Jinhua, Zhao, Hongling, Nakayama, Keiko, Nakayama, Keiich I., Zhu, Liang
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982150/
https://www.ncbi.nlm.nih.gov/pubmed/24632684
http://dx.doi.org/10.1038/ncomms4463
Descripción
Sumario:One mechanism of tumor suppression by pRb is repressing E2F1. Hence, E2f1 deletion diminishes tumorigenesis following Rb1 loss. However, E2F1 promotes both proliferation and apoptosis. It therefore remains unclear how de-repressed E2F1 promotes tumorigenesis. Another mechanism of pRb function is repressing Skp2 to elevate p27 to arrest proliferation. However, Skp2 deletion induced apoptosis, not proliferation arrest, in Rb1 deficient pituitary tumorigenesis. Here, we show that Rb1 deletion induces higher expression of E2F1 target genes in the absence of Skp2. E2F1 binds less cyclin A but more target promoters when Rb1 is deleted with Skp2 knockout or p27T187A knockin, suggesting that stabilized p27 prevents cyclin A from binding and inhibiting E2F1. In Rb1 deficient pituitary tumorigenesis, Skp2 deletion or p27T187A mutation converts E2F1’s role from proliferative to apoptotic. These findings delineate a pRb-Skp2-p27-cyclin A-E2F1 pathway that determines whether E2F1 is proliferative or apoptotic in Rb1 deficient tumorigenesis.