Cargando…

The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase

Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms b...

Descripción completa

Detalles Bibliográficos
Autores principales: Li, Sheena Claire, Diakov, Theodore T., Xu, Tao, Tarsio, Maureen, Zhu, Wandi, Couoh-Cardel, Sergio, Weisman, Lois S., Kane, Patricia M.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The American Society for Cell Biology 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982991/
https://www.ncbi.nlm.nih.gov/pubmed/24523285
http://dx.doi.org/10.1091/mbc.E13-10-0563
_version_ 1782311237403541504
author Li, Sheena Claire
Diakov, Theodore T.
Xu, Tao
Tarsio, Maureen
Zhu, Wandi
Couoh-Cardel, Sergio
Weisman, Lois S.
Kane, Patricia M.
author_facet Li, Sheena Claire
Diakov, Theodore T.
Xu, Tao
Tarsio, Maureen
Zhu, Wandi
Couoh-Cardel, Sergio
Weisman, Lois S.
Kane, Patricia M.
author_sort Li, Sheena Claire
collection PubMed
description Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)). V-ATPase activation through V(1)-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P(2) synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P(2) on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P(2) levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V(1)-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P(2)-containing membranes stabilizes V(1)-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P(2) loss may arise from compromised V-ATPase stability and regulation.
format Online
Article
Text
id pubmed-3982991
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher The American Society for Cell Biology
record_format MEDLINE/PubMed
spelling pubmed-39829912014-06-30 The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase Li, Sheena Claire Diakov, Theodore T. Xu, Tao Tarsio, Maureen Zhu, Wandi Couoh-Cardel, Sergio Weisman, Lois S. Kane, Patricia M. Mol Biol Cell Articles Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)). V-ATPase activation through V(1)-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P(2) synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P(2) on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P(2) levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V(1)-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P(2)-containing membranes stabilizes V(1)-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P(2) loss may arise from compromised V-ATPase stability and regulation. The American Society for Cell Biology 2014-04-15 /pmc/articles/PMC3982991/ /pubmed/24523285 http://dx.doi.org/10.1091/mbc.E13-10-0563 Text en © 2014 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology.
spellingShingle Articles
Li, Sheena Claire
Diakov, Theodore T.
Xu, Tao
Tarsio, Maureen
Zhu, Wandi
Couoh-Cardel, Sergio
Weisman, Lois S.
Kane, Patricia M.
The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title_full The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title_fullStr The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title_full_unstemmed The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title_short The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
title_sort signaling lipid pi(3,5)p(2) stabilizes v(1)–v(o) sector interactions and activates the v-atpase
topic Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982991/
https://www.ncbi.nlm.nih.gov/pubmed/24523285
http://dx.doi.org/10.1091/mbc.E13-10-0563
work_keys_str_mv AT lisheenaclaire thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT diakovtheodoret thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT xutao thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT tarsiomaureen thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT zhuwandi thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT couohcardelsergio thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT weismanloiss thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT kanepatriciam thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT lisheenaclaire signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT diakovtheodoret signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT xutao signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT tarsiomaureen signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT zhuwandi signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT couohcardelsergio signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT weismanloiss signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase
AT kanepatriciam signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase