Cargando…
The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase
Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms b...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The American Society for Cell Biology
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982991/ https://www.ncbi.nlm.nih.gov/pubmed/24523285 http://dx.doi.org/10.1091/mbc.E13-10-0563 |
_version_ | 1782311237403541504 |
---|---|
author | Li, Sheena Claire Diakov, Theodore T. Xu, Tao Tarsio, Maureen Zhu, Wandi Couoh-Cardel, Sergio Weisman, Lois S. Kane, Patricia M. |
author_facet | Li, Sheena Claire Diakov, Theodore T. Xu, Tao Tarsio, Maureen Zhu, Wandi Couoh-Cardel, Sergio Weisman, Lois S. Kane, Patricia M. |
author_sort | Li, Sheena Claire |
collection | PubMed |
description | Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)). V-ATPase activation through V(1)-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P(2) synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P(2) on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P(2) levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V(1)-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P(2)-containing membranes stabilizes V(1)-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P(2) loss may arise from compromised V-ATPase stability and regulation. |
format | Online Article Text |
id | pubmed-3982991 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The American Society for Cell Biology |
record_format | MEDLINE/PubMed |
spelling | pubmed-39829912014-06-30 The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase Li, Sheena Claire Diakov, Theodore T. Xu, Tao Tarsio, Maureen Zhu, Wandi Couoh-Cardel, Sergio Weisman, Lois S. Kane, Patricia M. Mol Biol Cell Articles Vacuolar proton-translocating ATPases (V-ATPases) are highly conserved, ATP-driven proton pumps regulated by reversible dissociation of its cytosolic, peripheral V(1) domain from the integral membrane V(o) domain. Multiple stresses induce changes in V(1)-V(o) assembly, but the signaling mechanisms behind these changes are not understood. Here we show that certain stress-responsive changes in V-ATPase activity and assembly require the signaling lipid phosphatidylinositol 3,5-bisphosphate (PI(3,5)P(2)). V-ATPase activation through V(1)-V(o) assembly in response to salt stress is strongly dependent on PI(3,5)P(2) synthesis. Purified V(o) complexes preferentially bind to PI(3,5)P(2) on lipid arrays, suggesting direct binding between the lipid and the membrane sector of the V-ATPase. Increasing PI(3,5)P(2) levels in vivo recruits the N-terminal domain of V(o)-sector subunit Vph1p from cytosol to membranes, independent of other subunits. This Vph1p domain is critical for V(1)-V(o) interaction, suggesting that interaction of Vph1p with PI(3,5)P(2)-containing membranes stabilizes V(1)-V(o) assembly and thus increases V-ATPase activity. These results help explain the previously described vacuolar acidification defect in yeast fab1∆ and vac14∆ mutants and suggest that human disease phenotypes associated with PI(3,5)P(2) loss may arise from compromised V-ATPase stability and regulation. The American Society for Cell Biology 2014-04-15 /pmc/articles/PMC3982991/ /pubmed/24523285 http://dx.doi.org/10.1091/mbc.E13-10-0563 Text en © 2014 Li et al. This article is distributed by The American Society for Cell Biology under license from the author(s). Two months after publication it is available to the public under an Attribution–Noncommercial–Share Alike 3.0 Unported Creative Commons License (http://creativecommons.org/licenses/by-nc-sa/3.0). “ASCB®,” “The American Society for Cell Biology®,” and “Molecular Biology of the Cell®” are registered trademarks of The American Society of Cell Biology. |
spellingShingle | Articles Li, Sheena Claire Diakov, Theodore T. Xu, Tao Tarsio, Maureen Zhu, Wandi Couoh-Cardel, Sergio Weisman, Lois S. Kane, Patricia M. The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title | The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title_full | The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title_fullStr | The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title_full_unstemmed | The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title_short | The signaling lipid PI(3,5)P(2) stabilizes V(1)–V(o) sector interactions and activates the V-ATPase |
title_sort | signaling lipid pi(3,5)p(2) stabilizes v(1)–v(o) sector interactions and activates the v-atpase |
topic | Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3982991/ https://www.ncbi.nlm.nih.gov/pubmed/24523285 http://dx.doi.org/10.1091/mbc.E13-10-0563 |
work_keys_str_mv | AT lisheenaclaire thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT diakovtheodoret thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT xutao thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT tarsiomaureen thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT zhuwandi thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT couohcardelsergio thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT weismanloiss thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT kanepatriciam thesignalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT lisheenaclaire signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT diakovtheodoret signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT xutao signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT tarsiomaureen signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT zhuwandi signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT couohcardelsergio signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT weismanloiss signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase AT kanepatriciam signalinglipidpi35p2stabilizesv1vosectorinteractionsandactivatesthevatpase |