Cargando…

Ultra Q-bodies: quench-based antibody probes that utilize dye-dye interactions with enhanced antigen-dependent fluorescence

Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we pre...

Descripción completa

Detalles Bibliográficos
Autores principales: Abe, Ryoji, Jeong, Hee-Jin, Arakawa, Dai, Dong, Jinhua, Ohashi, Hiroyuki, Kaigome, Rena, Saiki, Fujio, Yamane, Kyosuke, Takagi, Hiroaki, Ueda, Hiroshi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3983608/
https://www.ncbi.nlm.nih.gov/pubmed/24721819
http://dx.doi.org/10.1038/srep04640
Descripción
Sumario:Recently, we described a novel reagentless fluorescent biosensor strategy named Quenchbody, which functions via the antigen-dependent removal of the quenching effect on a fluorophore that is attached to a single-chain antibody variable region. To explore the practical utility of Quenchbodies, we prepared antibody Fab fragments that were fluorolabeled at either one or two of the N-terminal regions, using a cell-free translation-mediated position-specific protein labeling system. Unexpectedly, the Fab fragment labeled at the heavy chain N-terminal region demonstrated a deeper quenching and antigen-dependent release compared to that observed using scFv. Moreover, when the Fab was fluorolabeled at the two N-termini with either the same dye or with two different dyes, an improved response due to enhanced quenching via dye-dye interactions was observed. On the basis of this approach, several targets, including peptides, proteins, and haptens, as well as narcotics, were quantified with a higher response up to 50-fold. In addition, differentiation of osteosarcoma to osteoblasts was successfully imaged using a similarly fluorolabeled recombinant Fab protein prepared from E. coli. Due to its versatility, this “Ultra-Quenchbody” is expected to exhibit a range of applications from in vitro diagnostics to the live imaging of various targets in situ.