Cargando…

Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice

BACKGROUND: Hypertension is a major risk factor for renal disease progression. However, the mechanisms by which hypertension aggravates the effects of diabetes on the kidney are incompletely understood. We tested the hypothesis that renovascular hypertension accelerates angiotensin-II-dependent kidn...

Descripción completa

Detalles Bibliográficos
Autores principales: Hartono, Stella P, Knudsen, Bruce E, Lerman, Lilach O, Textor, Stephen C, Grande, Joseph P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984262/
https://www.ncbi.nlm.nih.gov/pubmed/24708836
http://dx.doi.org/10.1186/1471-2369-15-58
_version_ 1782311431940603904
author Hartono, Stella P
Knudsen, Bruce E
Lerman, Lilach O
Textor, Stephen C
Grande, Joseph P
author_facet Hartono, Stella P
Knudsen, Bruce E
Lerman, Lilach O
Textor, Stephen C
Grande, Joseph P
author_sort Hartono, Stella P
collection PubMed
description BACKGROUND: Hypertension is a major risk factor for renal disease progression. However, the mechanisms by which hypertension aggravates the effects of diabetes on the kidney are incompletely understood. We tested the hypothesis that renovascular hypertension accelerates angiotensin-II-dependent kidney damage and inflammation in the db/db mouse, a model of type II diabetes. METHODS: Renovascular hypertension was established in db/db and wild-type control mice through unilateral renal artery stenosis (RAS); the non-stenotic contralateral kidneys evaluated 2, 4 and 6 weeks later. Angiotensin-II infusion (1000 ng/kg/min), unilateral nephrectomy, or both were also performed in db/db mice to discern the contributions of hypertension versus hyperfiltration to development of chronic renal injury in db/db mice with RAS. The effect of blood pressure reduction in db/db mice with RAS was assessed using angiotensin-receptor-blocker (ARB) or hydralazine treatment. RESULTS: Db/db mice with renovascular hypertension developed greater and more prolonged elevation of renin activity than all other groups studied. Stenotic kidneys of db/db mice developed progressive interstitial fibrosis, tubular atrophy, and interstitial inflammation. Contralateral kidneys of wild type mice with RAS showed minimal histopathologic abnormalities, whereas db/db mice with RAS developed severe diffuse mesangial sclerosis, interstitial fibrosis, tubular atrophy, and interstitial inflammation. Db/db mice with Angiotensin II-induced hypertension developed interstitial lesions and albuminuria but not mesangial matrix expansion, while nephrectomized db/db mice exhibited modest mesangial expansion and interstitial fibrosis, but not significant albuminuria. The combination of unilateral nephrectomy and angiotensin II infusion reproduced all the features of the injury albeit in a less severe manner. ARB and hydralazine were equally effective in attenuating the development of mesangial expansion in the contralateral kidneys of db/db mice with RAS. However, only ARB prevented elevation of urinary albumin/creatinine in db/db mice with RAS. CONCLUSION: Renovascular hypertension superimposed on diabetes exacerbates development of chronic renal disease in db/db mice at least in part through interaction with the renin-angiotensin system. Both ARB and hydralazine were equally effective in reducing systolic blood pressure and in preventing renal injury in the contralateral kidney of db/db mice with renal artery stenosis. ARB but not hydralazine prevented elevation of urinary albumin/creatinine in the db/db RAS model.
format Online
Article
Text
id pubmed-3984262
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39842622014-04-12 Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice Hartono, Stella P Knudsen, Bruce E Lerman, Lilach O Textor, Stephen C Grande, Joseph P BMC Nephrol Research Article BACKGROUND: Hypertension is a major risk factor for renal disease progression. However, the mechanisms by which hypertension aggravates the effects of diabetes on the kidney are incompletely understood. We tested the hypothesis that renovascular hypertension accelerates angiotensin-II-dependent kidney damage and inflammation in the db/db mouse, a model of type II diabetes. METHODS: Renovascular hypertension was established in db/db and wild-type control mice through unilateral renal artery stenosis (RAS); the non-stenotic contralateral kidneys evaluated 2, 4 and 6 weeks later. Angiotensin-II infusion (1000 ng/kg/min), unilateral nephrectomy, or both were also performed in db/db mice to discern the contributions of hypertension versus hyperfiltration to development of chronic renal injury in db/db mice with RAS. The effect of blood pressure reduction in db/db mice with RAS was assessed using angiotensin-receptor-blocker (ARB) or hydralazine treatment. RESULTS: Db/db mice with renovascular hypertension developed greater and more prolonged elevation of renin activity than all other groups studied. Stenotic kidneys of db/db mice developed progressive interstitial fibrosis, tubular atrophy, and interstitial inflammation. Contralateral kidneys of wild type mice with RAS showed minimal histopathologic abnormalities, whereas db/db mice with RAS developed severe diffuse mesangial sclerosis, interstitial fibrosis, tubular atrophy, and interstitial inflammation. Db/db mice with Angiotensin II-induced hypertension developed interstitial lesions and albuminuria but not mesangial matrix expansion, while nephrectomized db/db mice exhibited modest mesangial expansion and interstitial fibrosis, but not significant albuminuria. The combination of unilateral nephrectomy and angiotensin II infusion reproduced all the features of the injury albeit in a less severe manner. ARB and hydralazine were equally effective in attenuating the development of mesangial expansion in the contralateral kidneys of db/db mice with RAS. However, only ARB prevented elevation of urinary albumin/creatinine in db/db mice with RAS. CONCLUSION: Renovascular hypertension superimposed on diabetes exacerbates development of chronic renal disease in db/db mice at least in part through interaction with the renin-angiotensin system. Both ARB and hydralazine were equally effective in reducing systolic blood pressure and in preventing renal injury in the contralateral kidney of db/db mice with renal artery stenosis. ARB but not hydralazine prevented elevation of urinary albumin/creatinine in the db/db RAS model. BioMed Central 2014-04-04 /pmc/articles/PMC3984262/ /pubmed/24708836 http://dx.doi.org/10.1186/1471-2369-15-58 Text en Copyright © 2014 Hartono et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research Article
Hartono, Stella P
Knudsen, Bruce E
Lerman, Lilach O
Textor, Stephen C
Grande, Joseph P
Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title_full Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title_fullStr Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title_full_unstemmed Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title_short Combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
title_sort combined effect of hyperfiltration and renin angiotensin system activation on development of chronic kidney disease in diabetic db/db mice
topic Research Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3984262/
https://www.ncbi.nlm.nih.gov/pubmed/24708836
http://dx.doi.org/10.1186/1471-2369-15-58
work_keys_str_mv AT hartonostellap combinedeffectofhyperfiltrationandreninangiotensinsystemactivationondevelopmentofchronickidneydiseaseindiabeticdbdbmice
AT knudsenbrucee combinedeffectofhyperfiltrationandreninangiotensinsystemactivationondevelopmentofchronickidneydiseaseindiabeticdbdbmice
AT lermanlilacho combinedeffectofhyperfiltrationandreninangiotensinsystemactivationondevelopmentofchronickidneydiseaseindiabeticdbdbmice
AT textorstephenc combinedeffectofhyperfiltrationandreninangiotensinsystemactivationondevelopmentofchronickidneydiseaseindiabeticdbdbmice
AT grandejosephp combinedeffectofhyperfiltrationandreninangiotensinsystemactivationondevelopmentofchronickidneydiseaseindiabeticdbdbmice