Cargando…

Design and Synthesis of Heterocyclic Cations for Specific DNA Recognition: From AT-Rich to Mixed-Base-Pair DNA Sequences

[Image: see text] The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove....

Descripción completa

Detalles Bibliográficos
Autores principales: Chai, Yun, Paul, Ananya, Rettig, Michael, Wilson, W. David, Boykin, David W.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: American Chemical Society 2014
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985508/
https://www.ncbi.nlm.nih.gov/pubmed/24422528
http://dx.doi.org/10.1021/jo402599s
Descripción
Sumario:[Image: see text] The compounds synthesized in this research were designed with the goal of establishing a new paradigm for mixed-base-pair DNA sequence-specific recognition. The design scheme starts with a cell-permeable heterocyclic cation that binds to AT base pair sites in the DNA minor groove. Modifications were introduced in the original compound to include an H-bond accepting group to specifically recognize the G-NH that projects into the minor groove. Therefore, a series of heterocyclic cations substituted with an azabenzimidazole ring has been designed and synthesized for mixed-base-pair DNA recognition. The most successful compound, 12a, had an azabenzimidazole to recognize G and additional modifications for general minor groove interactions. It binds to the DNA site −AAAGTTT– more strongly than the −AAATTT– site without GC and indicates the design success. Structural modifications of 12a generally weakened binding. The interactions of the new compound with a variety of DNA sequences with and without GC base pairs were evaluated by thermal melting analysis, circular dichroism, fluorescence emission spectroscopy, surface plasmon resonance, and molecular modeling.