Cargando…
Resonance Raman Spectroscopy of the Oxygenated Intermediates of Human CYP19A1 Implicates a Compound I Intermediate in the Final Lyase Step
[Image: see text] CYP19A1, or aromatase, a cytochrome P450 responsible for estrogen biosynthesis in humans, is an important therapeutic target for the treatment of breast cancer. There is still controversy surrounding the identity of reaction intermediate that catalyzes carbon–carbon scission in thi...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985783/ https://www.ncbi.nlm.nih.gov/pubmed/24645879 http://dx.doi.org/10.1021/ja500054c |
_version_ | 1782311626984128512 |
---|---|
author | Mak, Piotr J. Luthra, Abhinav Sligar, Stephen G. Kincaid, James R. |
author_facet | Mak, Piotr J. Luthra, Abhinav Sligar, Stephen G. Kincaid, James R. |
author_sort | Mak, Piotr J. |
collection | PubMed |
description | [Image: see text] CYP19A1, or aromatase, a cytochrome P450 responsible for estrogen biosynthesis in humans, is an important therapeutic target for the treatment of breast cancer. There is still controversy surrounding the identity of reaction intermediate that catalyzes carbon–carbon scission in this key enzyme. Probing the oxy-complexes of CYP19A1 poised for hydroxylase and lyase chemistries using resonance Raman spectroscopy and drawing a comparison with CYP17A1, we have found no significant difference in the frequencies or isotopic shifts for these two steps in CYP19A1. Our experiments implicate the involvement of Compound I in the terminal lyase step of CYP19A1 catalysis. |
format | Online Article Text |
id | pubmed-3985783 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39857832015-03-19 Resonance Raman Spectroscopy of the Oxygenated Intermediates of Human CYP19A1 Implicates a Compound I Intermediate in the Final Lyase Step Mak, Piotr J. Luthra, Abhinav Sligar, Stephen G. Kincaid, James R. J Am Chem Soc [Image: see text] CYP19A1, or aromatase, a cytochrome P450 responsible for estrogen biosynthesis in humans, is an important therapeutic target for the treatment of breast cancer. There is still controversy surrounding the identity of reaction intermediate that catalyzes carbon–carbon scission in this key enzyme. Probing the oxy-complexes of CYP19A1 poised for hydroxylase and lyase chemistries using resonance Raman spectroscopy and drawing a comparison with CYP17A1, we have found no significant difference in the frequencies or isotopic shifts for these two steps in CYP19A1. Our experiments implicate the involvement of Compound I in the terminal lyase step of CYP19A1 catalysis. American Chemical Society 2014-03-19 2014-04-02 /pmc/articles/PMC3985783/ /pubmed/24645879 http://dx.doi.org/10.1021/ja500054c Text en Copyright © 2014 American Chemical Society |
spellingShingle | Mak, Piotr J. Luthra, Abhinav Sligar, Stephen G. Kincaid, James R. Resonance Raman Spectroscopy of the Oxygenated Intermediates of Human CYP19A1 Implicates a Compound I Intermediate in the Final Lyase Step |
title | Resonance
Raman Spectroscopy of the Oxygenated Intermediates
of Human CYP19A1 Implicates a Compound I Intermediate in the Final
Lyase Step |
title_full | Resonance
Raman Spectroscopy of the Oxygenated Intermediates
of Human CYP19A1 Implicates a Compound I Intermediate in the Final
Lyase Step |
title_fullStr | Resonance
Raman Spectroscopy of the Oxygenated Intermediates
of Human CYP19A1 Implicates a Compound I Intermediate in the Final
Lyase Step |
title_full_unstemmed | Resonance
Raman Spectroscopy of the Oxygenated Intermediates
of Human CYP19A1 Implicates a Compound I Intermediate in the Final
Lyase Step |
title_short | Resonance
Raman Spectroscopy of the Oxygenated Intermediates
of Human CYP19A1 Implicates a Compound I Intermediate in the Final
Lyase Step |
title_sort | resonance
raman spectroscopy of the oxygenated intermediates
of human cyp19a1 implicates a compound i intermediate in the final
lyase step |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985783/ https://www.ncbi.nlm.nih.gov/pubmed/24645879 http://dx.doi.org/10.1021/ja500054c |
work_keys_str_mv | AT makpiotrj resonanceramanspectroscopyoftheoxygenatedintermediatesofhumancyp19a1implicatesacompoundiintermediateinthefinallyasestep AT luthraabhinav resonanceramanspectroscopyoftheoxygenatedintermediatesofhumancyp19a1implicatesacompoundiintermediateinthefinallyasestep AT sligarstepheng resonanceramanspectroscopyoftheoxygenatedintermediatesofhumancyp19a1implicatesacompoundiintermediateinthefinallyasestep AT kincaidjamesr resonanceramanspectroscopyoftheoxygenatedintermediatesofhumancyp19a1implicatesacompoundiintermediateinthefinallyasestep |