Cargando…
Synthesis and Biological Evaluation of Bis-CNB-GABA, a Photoactivatable Neurotransmitter with Low Receptor Interference and Chemical Two-Photon Uncaging Properties
[Image: see text] Photoactivatable “caged” neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensit...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985807/ https://www.ncbi.nlm.nih.gov/pubmed/24422544 http://dx.doi.org/10.1021/ja411082f |
_version_ | 1782311632119005184 |
---|---|
author | Shi, Diana D. Trigo, Federico F. Semmelhack, Martin F. Wang, Samuel S.-H. |
author_facet | Shi, Diana D. Trigo, Federico F. Semmelhack, Martin F. Wang, Samuel S.-H. |
author_sort | Shi, Diana D. |
collection | PubMed |
description | [Image: see text] Photoactivatable “caged” neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensity of caged GABAs to interact with GABA receptors. We describe herein the synthesis and application of a practically useful doubly caged GABA analog, termed bis-α-carboxy-2-nitrobenzyl-GABA (bis-CNB-GABA). Uncaging of bis-CNB-GABA evokes inward GABAergic currents in cerebellar molecular layer interneurons with rise times of 2 ms, comparable to flash duration. Response amplitudes depend on the square of flash intensity, as expected for a chemical two-photon uncaging effect. Importantly, prior to uncaging, bis-CNB-GABA is inactive at the GABA(A) receptor, evoking no changes in holding current in voltage-clamped neurons and showing an IC(50) of at least 2.5 mM as measured using spontaneous GABAergic synaptic currents. Bis-CNB-GABA is stable in solution, with an estimated half-life of 98 days in the light. We expect that bis-CNB-GABA will prove to be an effective tool for high-resolution chemical control of brain circuits. |
format | Online Article Text |
id | pubmed-3985807 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-39858072015-01-14 Synthesis and Biological Evaluation of Bis-CNB-GABA, a Photoactivatable Neurotransmitter with Low Receptor Interference and Chemical Two-Photon Uncaging Properties Shi, Diana D. Trigo, Federico F. Semmelhack, Martin F. Wang, Samuel S.-H. J Am Chem Soc [Image: see text] Photoactivatable “caged” neurotransmitters allow optical control of neural tissue with high spatial and temporal precision. However, the development of caged versions of the chief vertebrate inhibitory neurotransmitter, γ-amino butyric acid (GABA), has been limited by the propensity of caged GABAs to interact with GABA receptors. We describe herein the synthesis and application of a practically useful doubly caged GABA analog, termed bis-α-carboxy-2-nitrobenzyl-GABA (bis-CNB-GABA). Uncaging of bis-CNB-GABA evokes inward GABAergic currents in cerebellar molecular layer interneurons with rise times of 2 ms, comparable to flash duration. Response amplitudes depend on the square of flash intensity, as expected for a chemical two-photon uncaging effect. Importantly, prior to uncaging, bis-CNB-GABA is inactive at the GABA(A) receptor, evoking no changes in holding current in voltage-clamped neurons and showing an IC(50) of at least 2.5 mM as measured using spontaneous GABAergic synaptic currents. Bis-CNB-GABA is stable in solution, with an estimated half-life of 98 days in the light. We expect that bis-CNB-GABA will prove to be an effective tool for high-resolution chemical control of brain circuits. American Chemical Society 2014-01-14 2014-02-05 /pmc/articles/PMC3985807/ /pubmed/24422544 http://dx.doi.org/10.1021/ja411082f Text en Copyright © 2014 American Chemical Society |
spellingShingle | Shi, Diana D. Trigo, Federico F. Semmelhack, Martin F. Wang, Samuel S.-H. Synthesis and Biological Evaluation of Bis-CNB-GABA, a Photoactivatable Neurotransmitter with Low Receptor Interference and Chemical Two-Photon Uncaging Properties |
title | Synthesis
and Biological Evaluation of Bis-CNB-GABA,
a Photoactivatable Neurotransmitter with Low Receptor Interference
and Chemical Two-Photon Uncaging Properties |
title_full | Synthesis
and Biological Evaluation of Bis-CNB-GABA,
a Photoactivatable Neurotransmitter with Low Receptor Interference
and Chemical Two-Photon Uncaging Properties |
title_fullStr | Synthesis
and Biological Evaluation of Bis-CNB-GABA,
a Photoactivatable Neurotransmitter with Low Receptor Interference
and Chemical Two-Photon Uncaging Properties |
title_full_unstemmed | Synthesis
and Biological Evaluation of Bis-CNB-GABA,
a Photoactivatable Neurotransmitter with Low Receptor Interference
and Chemical Two-Photon Uncaging Properties |
title_short | Synthesis
and Biological Evaluation of Bis-CNB-GABA,
a Photoactivatable Neurotransmitter with Low Receptor Interference
and Chemical Two-Photon Uncaging Properties |
title_sort | synthesis
and biological evaluation of bis-cnb-gaba,
a photoactivatable neurotransmitter with low receptor interference
and chemical two-photon uncaging properties |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3985807/ https://www.ncbi.nlm.nih.gov/pubmed/24422544 http://dx.doi.org/10.1021/ja411082f |
work_keys_str_mv | AT shidianad synthesisandbiologicalevaluationofbiscnbgabaaphotoactivatableneurotransmitterwithlowreceptorinterferenceandchemicaltwophotonuncagingproperties AT trigofedericof synthesisandbiologicalevaluationofbiscnbgabaaphotoactivatableneurotransmitterwithlowreceptorinterferenceandchemicaltwophotonuncagingproperties AT semmelhackmartinf synthesisandbiologicalevaluationofbiscnbgabaaphotoactivatableneurotransmitterwithlowreceptorinterferenceandchemicaltwophotonuncagingproperties AT wangsamuelsh synthesisandbiologicalevaluationofbiscnbgabaaphotoactivatableneurotransmitterwithlowreceptorinterferenceandchemicaltwophotonuncagingproperties |