Cargando…
Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or patholo...
Autores principales: | , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Pub. Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988820/ https://www.ncbi.nlm.nih.gov/pubmed/24686499 http://dx.doi.org/10.1038/ncomms4550 |
_version_ | 1782312071586643968 |
---|---|
author | Khacho, Mireille Tarabay, Michelle Patten, David Khacho, Pamela MacLaurin, Jason G. Guadagno, Jennifer Bergeron, Richard Cregan, Sean P. Harper, Mary-Ellen Park, David S. Slack, Ruth S. |
author_facet | Khacho, Mireille Tarabay, Michelle Patten, David Khacho, Pamela MacLaurin, Jason G. Guadagno, Jennifer Bergeron, Richard Cregan, Sean P. Harper, Mary-Ellen Park, David S. Slack, Ruth S. |
author_sort | Khacho, Mireille |
collection | PubMed |
description | Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. |
format | Online Article Text |
id | pubmed-3988820 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Nature Pub. Group |
record_format | MEDLINE/PubMed |
spelling | pubmed-39888202014-04-18 Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival Khacho, Mireille Tarabay, Michelle Patten, David Khacho, Pamela MacLaurin, Jason G. Guadagno, Jennifer Bergeron, Richard Cregan, Sean P. Harper, Mary-Ellen Park, David S. Slack, Ruth S. Nat Commun Article Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. Nature Pub. Group 2014-04-01 /pmc/articles/PMC3988820/ /pubmed/24686499 http://dx.doi.org/10.1038/ncomms4550 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ |
spellingShingle | Article Khacho, Mireille Tarabay, Michelle Patten, David Khacho, Pamela MacLaurin, Jason G. Guadagno, Jennifer Bergeron, Richard Cregan, Sean P. Harper, Mary-Ellen Park, David S. Slack, Ruth S. Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title | Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title_full | Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title_fullStr | Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title_full_unstemmed | Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title_short | Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
title_sort | acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988820/ https://www.ncbi.nlm.nih.gov/pubmed/24686499 http://dx.doi.org/10.1038/ncomms4550 |
work_keys_str_mv | AT khachomireille acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT tarabaymichelle acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT pattendavid acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT khachopamela acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT maclaurinjasong acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT guadagnojennifer acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT bergeronrichard acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT creganseanp acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT harpermaryellen acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT parkdavids acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival AT slackruths acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival |