Cargando…

Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival

Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or patholo...

Descripción completa

Detalles Bibliográficos
Autores principales: Khacho, Mireille, Tarabay, Michelle, Patten, David, Khacho, Pamela, MacLaurin, Jason G., Guadagno, Jennifer, Bergeron, Richard, Cregan, Sean P., Harper, Mary-Ellen, Park, David S., Slack, Ruth S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Pub. Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988820/
https://www.ncbi.nlm.nih.gov/pubmed/24686499
http://dx.doi.org/10.1038/ncomms4550
_version_ 1782312071586643968
author Khacho, Mireille
Tarabay, Michelle
Patten, David
Khacho, Pamela
MacLaurin, Jason G.
Guadagno, Jennifer
Bergeron, Richard
Cregan, Sean P.
Harper, Mary-Ellen
Park, David S.
Slack, Ruth S.
author_facet Khacho, Mireille
Tarabay, Michelle
Patten, David
Khacho, Pamela
MacLaurin, Jason G.
Guadagno, Jennifer
Bergeron, Richard
Cregan, Sean P.
Harper, Mary-Ellen
Park, David S.
Slack, Ruth S.
author_sort Khacho, Mireille
collection PubMed
description Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells.
format Online
Article
Text
id pubmed-3988820
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Pub. Group
record_format MEDLINE/PubMed
spelling pubmed-39888202014-04-18 Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival Khacho, Mireille Tarabay, Michelle Patten, David Khacho, Pamela MacLaurin, Jason G. Guadagno, Jennifer Bergeron, Richard Cregan, Sean P. Harper, Mary-Ellen Park, David S. Slack, Ruth S. Nat Commun Article Sustained cellular function and viability of high-energy demanding post-mitotic cells rely on the continuous supply of ATP. The utilization of mitochondrial oxidative phosphorylation for efficient ATP generation is a function of oxygen levels. As such, oxygen deprivation, in physiological or pathological settings, has profound effects on cell metabolism and survival. Here we show that mild extracellular acidosis, a physiological consequence of anaerobic metabolism, can reprogramme the mitochondrial metabolic pathway to preserve efficient ATP production regardless of oxygen levels. Acidosis initiates a rapid and reversible homeostatic programme that restructures mitochondria, by regulating mitochondrial dynamics and cristae architecture, to reconfigure mitochondrial efficiency, maintain mitochondrial function and cell survival. Preventing mitochondrial remodelling results in mitochondrial dysfunction, fragmentation and cell death. Our findings challenge the notion that oxygen availability is a key limiting factor in oxidative metabolism and brings forth the concept that mitochondrial morphology can dictate the bioenergetic status of post-mitotic cells. Nature Pub. Group 2014-04-01 /pmc/articles/PMC3988820/ /pubmed/24686499 http://dx.doi.org/10.1038/ncomms4550 Text en Copyright © 2014, Nature Publishing Group, a division of Macmillan Publishers Limited. All Rights Reserved. http://creativecommons.org/licenses/by-nc-sa/3.0/ This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in the credit line; if the material is not included under the Creative Commons license, users will need to obtain permission from the license holder to reproduce the material. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Article
Khacho, Mireille
Tarabay, Michelle
Patten, David
Khacho, Pamela
MacLaurin, Jason G.
Guadagno, Jennifer
Bergeron, Richard
Cregan, Sean P.
Harper, Mary-Ellen
Park, David S.
Slack, Ruth S.
Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title_full Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title_fullStr Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title_full_unstemmed Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title_short Acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
title_sort acidosis overrides oxygen deprivation to maintain mitochondrial function and cell survival
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3988820/
https://www.ncbi.nlm.nih.gov/pubmed/24686499
http://dx.doi.org/10.1038/ncomms4550
work_keys_str_mv AT khachomireille acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT tarabaymichelle acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT pattendavid acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT khachopamela acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT maclaurinjasong acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT guadagnojennifer acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT bergeronrichard acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT creganseanp acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT harpermaryellen acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT parkdavids acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival
AT slackruths acidosisoverridesoxygendeprivationtomaintainmitochondrialfunctionandcellsurvival