Cargando…

Protection of Pyruvate against Glutamate Excitotoxicity Is Mediated by Regulating DAPK1 Protein Complex

The neuroprotective activity of pyruvate has been confirmed in previous in vivo and in vitro studies. Here, we report a novel mechanism that pyruvate prevents SH-SY5Y cells from glutamate excitotoxicity by regulating death-associated protein kinase 1 (DAPK1) protein complex. Our results showed pyruv...

Descripción completa

Detalles Bibliográficos
Autores principales: Tian, Jingwei, Cheng, Jucan, Zhang, Jianzhao, Ye, Liang, Zhang, Fangxi, Dong, Qiuju, Wang, Hongbo, Fu, Fenghua
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3995922/
https://www.ncbi.nlm.nih.gov/pubmed/24755839
http://dx.doi.org/10.1371/journal.pone.0095777
Descripción
Sumario:The neuroprotective activity of pyruvate has been confirmed in previous in vivo and in vitro studies. Here, we report a novel mechanism that pyruvate prevents SH-SY5Y cells from glutamate excitotoxicity by regulating death-associated protein kinase 1 (DAPK1) protein complex. Our results showed pyruvate regulated DAPK1 protein complex to protect cells by two ways. First, pyruvate induced the dissociation of DAPK1 with NMDA receptors. The disruption of the DAPK1-NMDA receptors complex resulted in a decrease in NMDA receptors phosphorylation. Then the glutamate-stimulated Ca(2+) influx was inhibited and intracellular Ca(2+) overload was alleviated, which blocked the release of cytochrome c and cell death. In addition, increased Bcl-xL induced by pyruvate regulated Bax/Bak dependent death by inhibiting the release of cytochrome c from the mitochondrial inter-membrane space into the cytosol. As a result, the cytochrome c-initiated caspase cascade, including caspase-3 and caspase-9, was inhibited. Second, pyruvate promoted the association between DAPK1 and Beclin-1, which resulted in autophagy activation. The autophagy inhibitor 3-methyladenine reversed the protection afforded by pyruvate. Furthermore, the attenuation of mitochondrial damage induced by pyruvate was partly reduced by 3-methyladenine. This suggested autophagy mediated pyruvate protection by preventing mitochondrial damage. Taken together, pyruvate protects cells from glutamate excitotoxicity by regulating DAPK1 complexes, both through dissociation of DAPK1 from NMDA receptors and association of DAPK1 with Beclin-1. They go forward to protect cells by attenuating Ca(2+) overload and activating autophagy. Finally, a convergence of the two ways protects mitochondria from glutamate excitotoxicity, which leads to cell survival.