Cargando…

Sensory-Driven Enhancement of Calcium Signals in Individual Purkinje Cell Dendrites of Awake Mice

Climbing fibers (CFs) are thought to contribute to cerebellar plasticity and learning by triggering a large influx of dendritic calcium in the postsynaptic Purkinje cell (PC) to signal the occurrence of an unexpected sensory event. However, CFs fire about once per second whether or not an event occu...

Descripción completa

Detalles Bibliográficos
Autores principales: Najafi, Farzaneh, Giovannucci, Andrea, Wang, Samuel S.-H., Medina, Javier F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3996650/
https://www.ncbi.nlm.nih.gov/pubmed/24582958
http://dx.doi.org/10.1016/j.celrep.2014.02.001
Descripción
Sumario:Climbing fibers (CFs) are thought to contribute to cerebellar plasticity and learning by triggering a large influx of dendritic calcium in the postsynaptic Purkinje cell (PC) to signal the occurrence of an unexpected sensory event. However, CFs fire about once per second whether or not an event occurs, raising the question of how sensory-driven signals might be distinguished from a background of ongoing spontaneous activity. Here, we report that in PC dendrites of awake mice, CF-triggered calcium signals are enhanced when the trigger is a sensory event. In addition, we show that a large fraction of the total enhancement in each PC dendrite can be accounted for by an additional boost of calcium provided by sensory activation of a non-CF input. We suggest that sensory stimulation may modulate dendritic voltage and calcium concentration in PCs to increase the strength of plasticity signals during cerebellar learning.