Cargando…

Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties

BACKGROUND: The purpose of this study was to investigate some of the possible mechanisms underlying the protective effects of a dipeptidyl peptidase IV (DPP-IV) inhibitor, sitagliptin, on pancreatic tissue in an animal model of type 2 diabetes mellitus (T2DM), the Zucker Diabetic Fatty (ZDF) rat, fo...

Descripción completa

Detalles Bibliográficos
Autores principales: Mega, Cristina, Vala, Helena, Rodrigues-Santos, Paulo, Oliveira, Jorge, Teixeira, Frederico, Fernandes, Rosa, Reis, Flávio, de Lemos, Edite Teixeira
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998187/
https://www.ncbi.nlm.nih.gov/pubmed/24650557
http://dx.doi.org/10.1186/1758-5996-6-42
_version_ 1782313311652544512
author Mega, Cristina
Vala, Helena
Rodrigues-Santos, Paulo
Oliveira, Jorge
Teixeira, Frederico
Fernandes, Rosa
Reis, Flávio
de Lemos, Edite Teixeira
author_facet Mega, Cristina
Vala, Helena
Rodrigues-Santos, Paulo
Oliveira, Jorge
Teixeira, Frederico
Fernandes, Rosa
Reis, Flávio
de Lemos, Edite Teixeira
author_sort Mega, Cristina
collection PubMed
description BACKGROUND: The purpose of this study was to investigate some of the possible mechanisms underlying the protective effects of a dipeptidyl peptidase IV (DPP-IV) inhibitor, sitagliptin, on pancreatic tissue in an animal model of type 2 diabetes mellitus (T2DM), the Zucker Diabetic Fatty (ZDF) rat, focusing on glycaemic, insulinic and lipidic profiles, as well as, on apoptosis, inflammation, angiogenesis and proliferation mediators. METHODS: Male obese diabetic ZDF (fa/fa) rats, aged 20 weeks, were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks and compared to untreated diabetic and lean control littermates. Metabolic data was evaluated at the beginning and at the end of the treatment, including glycaemia, HbA1c, insulinaemia, HOMA-beta and TGs. Endocrine and exocrine pancreas lesions were assessed semiquantitatively by histopathological methods. Pancreas gene (mRNA) and protein expression of mediators of apoptotic machinery, inflammation and angiogenesis/proliferation (Bax, Bcl2, IL-1β, VEGF, PCNA and TRIB3) were analyzed by RT-qPCR and/or by immunohistochemistry. RESULTS: Sitagliptin treatment for 6 weeks (between 20 and 26 week-old) was able to significantly (p < 0.001) ameliorate all the metabolic parameters, by preventing the increase in blood glucose and in serum TGs contents (16.54% and 37.63%, respectively, vs untreated), as well as, by preventing the decrease in serum insulin levels and in the functional beta cells capacity accessed via HOMA-beta index (156.28% and 191.74%, respectively, vs untreated). Sitagliptin-treated diabetic rats presented a reduced pancreas Bax/Bcl2 ratio, suggestive of an antiapoptotic effect; in addition, sitagliptin was able to completely reduce (p < 0.001) the pancreas overexpression of IL-1β and TRIB3 found in the untreated diabetic animals; and promoted a significant (p < 0.001) overexpression of VEGF and PCNA. CONCLUSION: In this animal model of obese T2DM (the ZDF rat), sitagliptin prevented β-cell dysfunction and evolution of pancreatic damage. The protective effects afforded by this DPP-IV inhibitor may derive from improvement of the metabolic profile (viewed by the amelioration of glucose and TGs levels and of insulin resistance) and from cytoprotective properties, such as antiapoptotic, anti-inflammatory, pro-angiogenic and pro-proliferative.
format Online
Article
Text
id pubmed-3998187
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-39981872014-04-25 Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties Mega, Cristina Vala, Helena Rodrigues-Santos, Paulo Oliveira, Jorge Teixeira, Frederico Fernandes, Rosa Reis, Flávio de Lemos, Edite Teixeira Diabetol Metab Syndr Research BACKGROUND: The purpose of this study was to investigate some of the possible mechanisms underlying the protective effects of a dipeptidyl peptidase IV (DPP-IV) inhibitor, sitagliptin, on pancreatic tissue in an animal model of type 2 diabetes mellitus (T2DM), the Zucker Diabetic Fatty (ZDF) rat, focusing on glycaemic, insulinic and lipidic profiles, as well as, on apoptosis, inflammation, angiogenesis and proliferation mediators. METHODS: Male obese diabetic ZDF (fa/fa) rats, aged 20 weeks, were treated with sitagliptin (10 mg/kg bw/day) during 6 weeks and compared to untreated diabetic and lean control littermates. Metabolic data was evaluated at the beginning and at the end of the treatment, including glycaemia, HbA1c, insulinaemia, HOMA-beta and TGs. Endocrine and exocrine pancreas lesions were assessed semiquantitatively by histopathological methods. Pancreas gene (mRNA) and protein expression of mediators of apoptotic machinery, inflammation and angiogenesis/proliferation (Bax, Bcl2, IL-1β, VEGF, PCNA and TRIB3) were analyzed by RT-qPCR and/or by immunohistochemistry. RESULTS: Sitagliptin treatment for 6 weeks (between 20 and 26 week-old) was able to significantly (p < 0.001) ameliorate all the metabolic parameters, by preventing the increase in blood glucose and in serum TGs contents (16.54% and 37.63%, respectively, vs untreated), as well as, by preventing the decrease in serum insulin levels and in the functional beta cells capacity accessed via HOMA-beta index (156.28% and 191.74%, respectively, vs untreated). Sitagliptin-treated diabetic rats presented a reduced pancreas Bax/Bcl2 ratio, suggestive of an antiapoptotic effect; in addition, sitagliptin was able to completely reduce (p < 0.001) the pancreas overexpression of IL-1β and TRIB3 found in the untreated diabetic animals; and promoted a significant (p < 0.001) overexpression of VEGF and PCNA. CONCLUSION: In this animal model of obese T2DM (the ZDF rat), sitagliptin prevented β-cell dysfunction and evolution of pancreatic damage. The protective effects afforded by this DPP-IV inhibitor may derive from improvement of the metabolic profile (viewed by the amelioration of glucose and TGs levels and of insulin resistance) and from cytoprotective properties, such as antiapoptotic, anti-inflammatory, pro-angiogenic and pro-proliferative. BioMed Central 2014-03-20 /pmc/articles/PMC3998187/ /pubmed/24650557 http://dx.doi.org/10.1186/1758-5996-6-42 Text en Copyright © 2014 Mega et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Research
Mega, Cristina
Vala, Helena
Rodrigues-Santos, Paulo
Oliveira, Jorge
Teixeira, Frederico
Fernandes, Rosa
Reis, Flávio
de Lemos, Edite Teixeira
Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title_full Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title_fullStr Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title_full_unstemmed Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title_short Sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the Zucker Diabetic Fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
title_sort sitagliptin prevents aggravation of endocrine and exocrine pancreatic damage in the zucker diabetic fatty rat - focus on amelioration of metabolic profile and tissue cytoprotective properties
topic Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3998187/
https://www.ncbi.nlm.nih.gov/pubmed/24650557
http://dx.doi.org/10.1186/1758-5996-6-42
work_keys_str_mv AT megacristina sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT valahelena sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT rodriguessantospaulo sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT oliveirajorge sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT teixeirafrederico sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT fernandesrosa sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT reisflavio sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties
AT delemosediteteixeira sitagliptinpreventsaggravationofendocrineandexocrinepancreaticdamageinthezuckerdiabeticfattyratfocusonameliorationofmetabolicprofileandtissuecytoprotectiveproperties