Cargando…
Maize IgE binding proteins: each plant a different profile?
BACKGROUND: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural differences, at proteomic level, between maize populations, ma...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999935/ https://www.ncbi.nlm.nih.gov/pubmed/24650160 http://dx.doi.org/10.1186/1477-5956-12-17 |
_version_ | 1782313561575391232 |
---|---|
author | Fonseca, Cátia Planchon, Sébastien Pinheiro, Carla Renaut, Jenny Ricardo, Cândido Pinto Oliveira, M Margarida Batista, Rita |
author_facet | Fonseca, Cátia Planchon, Sébastien Pinheiro, Carla Renaut, Jenny Ricardo, Cândido Pinto Oliveira, M Margarida Batista, Rita |
author_sort | Fonseca, Cátia |
collection | PubMed |
description | BACKGROUND: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins. RESULTS: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions (albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress. CONCLUSIONS: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype. Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly stress conditions, may alter IgE binding protein profiles of plant components. |
format | Online Article Text |
id | pubmed-3999935 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-39999352014-04-26 Maize IgE binding proteins: each plant a different profile? Fonseca, Cátia Planchon, Sébastien Pinheiro, Carla Renaut, Jenny Ricardo, Cândido Pinto Oliveira, M Margarida Batista, Rita Proteome Sci Research BACKGROUND: Allergies are nearly always triggered by protein molecules and the majority of individuals with documented immunologic reactions to foods exhibit IgE hypersensitivity reactions. In this study we aimed to understand if natural differences, at proteomic level, between maize populations, may induce different IgE binding proteins profiles among maize-allergic individuals. We also intended to deepen our knowledge on maize IgE binding proteins. RESULTS: In order to accomplish this goal we have used proteomic tools (SDS-PAGE and 2-D gel electrophoresis followed by western blot) and tested plasma IgE reactivity from four maize-allergic individuals against four different protein fractions (albumins, globulins, glutelins and prolamins) of three different maize cultivars. We have observed that maize cultivars have different proteomes that result in different IgE binding proteins profiles when tested against plasma from maize-allergic individuals. We could identify 19 different maize IgE binding proteins, 11 of which were unknown to date. Moreover, we found that most (89.5%) of the 19 identified potential maize allergens could be related to plant stress. CONCLUSIONS: These results lead us to conclude that, within each species, plant allergenic potential varies with genotype. Moreover, considering the stress-related IgE binding proteins identified, we hypothesise that the environment, particularly stress conditions, may alter IgE binding protein profiles of plant components. BioMed Central 2014-03-20 /pmc/articles/PMC3999935/ /pubmed/24650160 http://dx.doi.org/10.1186/1477-5956-12-17 Text en Copyright © 2014 Fonseca et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Fonseca, Cátia Planchon, Sébastien Pinheiro, Carla Renaut, Jenny Ricardo, Cândido Pinto Oliveira, M Margarida Batista, Rita Maize IgE binding proteins: each plant a different profile? |
title | Maize IgE binding proteins: each plant a different profile? |
title_full | Maize IgE binding proteins: each plant a different profile? |
title_fullStr | Maize IgE binding proteins: each plant a different profile? |
title_full_unstemmed | Maize IgE binding proteins: each plant a different profile? |
title_short | Maize IgE binding proteins: each plant a different profile? |
title_sort | maize ige binding proteins: each plant a different profile? |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3999935/ https://www.ncbi.nlm.nih.gov/pubmed/24650160 http://dx.doi.org/10.1186/1477-5956-12-17 |
work_keys_str_mv | AT fonsecacatia maizeigebindingproteinseachplantadifferentprofile AT planchonsebastien maizeigebindingproteinseachplantadifferentprofile AT pinheirocarla maizeigebindingproteinseachplantadifferentprofile AT renautjenny maizeigebindingproteinseachplantadifferentprofile AT ricardocandidopinto maizeigebindingproteinseachplantadifferentprofile AT oliveirammargarida maizeigebindingproteinseachplantadifferentprofile AT batistarita maizeigebindingproteinseachplantadifferentprofile |