Cargando…

Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker

Glycation is a general spontaneous process in proteins which has significant impact on their physical and functional properties. These changes in protein properties could be related to several pathological consequences such as cataract, arteriosclerosis and Alzheimer’s disease. Among the proteins, g...

Descripción completa

Detalles Bibliográficos
Autores principales: Arasteh, Amir, Farahi, Sara, Habibi-Rezaei, Mehran, Moosavi-Movahedi, Ali Akbar
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000144/
https://www.ncbi.nlm.nih.gov/pubmed/24708663
http://dx.doi.org/10.1186/2251-6581-13-49
_version_ 1782313584827564032
author Arasteh, Amir
Farahi, Sara
Habibi-Rezaei, Mehran
Moosavi-Movahedi, Ali Akbar
author_facet Arasteh, Amir
Farahi, Sara
Habibi-Rezaei, Mehran
Moosavi-Movahedi, Ali Akbar
author_sort Arasteh, Amir
collection PubMed
description Glycation is a general spontaneous process in proteins which has significant impact on their physical and functional properties. These changes in protein properties could be related to several pathological consequences such as cataract, arteriosclerosis and Alzheimer’s disease. Among the proteins, glycation of Human serum albumin (HSA) is of special interest. Human serum albumin is the most abundant protein in the plasma and because of its high sensitivity for glycation, undergoes structural and functional changes due to binding of reducing sugars in vitro. The glycation process occurs by plasma glucose in vivo which has great impacts on the three dimensional structure of protein. These changes are efficient and stable enough which makes the protein to be considered as a new special disease marker instead of HbA1C for diabetes. In some cases, glycated albumin was used as an alternative marker for glycemic control. Glycated albumin reacts with glucose ten times more rapidly than HbA1C and has shorter half-life which makes it more reliable for indicating glycemic states. In this review, glycation of Human Serum Albumin has been overviewed, starting from overall concepts of glycation, followed by some Examples of pathological consequences of protein glycation. The BSA aggregation was reviewed in terms of structural and biological impacts of glycation on the protein followed by reporting documents which indicate possibility of glycated albumin to be used as specific marker for diabetes. Finally, some of the studies related to the models of glycated albumin have been briefly described, with an emphasis on In vitro studies. It is interesting to note the relationship found between in vitro glycation experiments and the propensity of proteins to form amyloid structures, a point that could be further explored as to its significance in hyperglycemic states.
format Online
Article
Text
id pubmed-4000144
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40001442014-04-26 Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker Arasteh, Amir Farahi, Sara Habibi-Rezaei, Mehran Moosavi-Movahedi, Ali Akbar J Diabetes Metab Disord Review Article Glycation is a general spontaneous process in proteins which has significant impact on their physical and functional properties. These changes in protein properties could be related to several pathological consequences such as cataract, arteriosclerosis and Alzheimer’s disease. Among the proteins, glycation of Human serum albumin (HSA) is of special interest. Human serum albumin is the most abundant protein in the plasma and because of its high sensitivity for glycation, undergoes structural and functional changes due to binding of reducing sugars in vitro. The glycation process occurs by plasma glucose in vivo which has great impacts on the three dimensional structure of protein. These changes are efficient and stable enough which makes the protein to be considered as a new special disease marker instead of HbA1C for diabetes. In some cases, glycated albumin was used as an alternative marker for glycemic control. Glycated albumin reacts with glucose ten times more rapidly than HbA1C and has shorter half-life which makes it more reliable for indicating glycemic states. In this review, glycation of Human Serum Albumin has been overviewed, starting from overall concepts of glycation, followed by some Examples of pathological consequences of protein glycation. The BSA aggregation was reviewed in terms of structural and biological impacts of glycation on the protein followed by reporting documents which indicate possibility of glycated albumin to be used as specific marker for diabetes. Finally, some of the studies related to the models of glycated albumin have been briefly described, with an emphasis on In vitro studies. It is interesting to note the relationship found between in vitro glycation experiments and the propensity of proteins to form amyloid structures, a point that could be further explored as to its significance in hyperglycemic states. BioMed Central 2014-04-07 /pmc/articles/PMC4000144/ /pubmed/24708663 http://dx.doi.org/10.1186/2251-6581-13-49 Text en Copyright © 2014 Arasteh et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated.
spellingShingle Review Article
Arasteh, Amir
Farahi, Sara
Habibi-Rezaei, Mehran
Moosavi-Movahedi, Ali Akbar
Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title_full Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title_fullStr Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title_full_unstemmed Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title_short Glycated albumin: an overview of the In Vitro models of an In Vivo potential disease marker
title_sort glycated albumin: an overview of the in vitro models of an in vivo potential disease marker
topic Review Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4000144/
https://www.ncbi.nlm.nih.gov/pubmed/24708663
http://dx.doi.org/10.1186/2251-6581-13-49
work_keys_str_mv AT arastehamir glycatedalbuminanoverviewoftheinvitromodelsofaninvivopotentialdiseasemarker
AT farahisara glycatedalbuminanoverviewoftheinvitromodelsofaninvivopotentialdiseasemarker
AT habibirezaeimehran glycatedalbuminanoverviewoftheinvitromodelsofaninvivopotentialdiseasemarker
AT moosavimovahedialiakbar glycatedalbuminanoverviewoftheinvitromodelsofaninvivopotentialdiseasemarker