Cargando…
Isoform-level gene signature improves prognostic stratification and accurately classifies glioblastoma subtypes
Molecular stratification of tumors is essential for developing personalized therapies. Although patient stratification strategies have been successful; computational methods to accurately translate the gene-signature from high-throughput platform to a clinically adaptable low-dimensional platform ar...
Autores principales: | Pal, Sharmistha, Bi, Yingtao, Macyszyn, Luke, Showe, Louise C., O'Rourke, Donald M., Davuluri, Ramana V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4005667/ https://www.ncbi.nlm.nih.gov/pubmed/24503249 http://dx.doi.org/10.1093/nar/gku121 |
Ejemplares similares
-
IsoformEx: isoform level gene expression estimation using weighted non-negative least squares from mRNA-Seq data
por: Kim, Hyunsoo, et al.
Publicado: (2011) -
Isoform level expression profiles provide better cancer signatures than gene level expression profiles
por: Zhang, ZhongFa, et al.
Publicado: (2013) -
Evaluation of data discretization methods to derive platform independent isoform expression signatures for multi-class tumor subtyping
por: Jung, Segun, et al.
Publicado: (2015) -
Immune landscapes associated with different glioblastoma molecular subtypes
por: Martinez-Lage, Maria, et al.
Publicado: (2019) -
PennSeq: accurate isoform-specific gene expression quantification in RNA-Seq by modeling non-uniform read distribution
por: Hu, Yu, et al.
Publicado: (2014)