Cargando…
Determining Effects of Non-synonymous SNPs on Protein-Protein Interactions using Supervised and Semi-supervised Learning
Single nucleotide polymorphisms (SNPs) are among the most common types of genetic variation in complex genetic disorders. A growing number of studies link the functional role of SNPs with the networks and pathways mediated by the disease-associated genes. For example, many non-synonymous missense SN...
Autores principales: | Zhao, Nan, Han, Jing Ginger, Shyu, Chi-Ren, Korkin, Dmitry |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4006705/ https://www.ncbi.nlm.nih.gov/pubmed/24784581 http://dx.doi.org/10.1371/journal.pcbi.1003592 |
Ejemplares similares
-
DOMMINO 2.0: integrating structurally resolved protein-, RNA-, and DNA-mediated macromolecular interactions
por: Kuang, Xingyan, et al.
Publicado: (2016) -
Protein complex detection with semi-supervised learning in protein interaction networks
por: Shi, Lei, et al.
Publicado: (2011) -
Generative Adversarial Training for Supervised and Semi-supervised Learning
por: Wang, Xianmin, et al.
Publicado: (2022) -
Semi-supervised learning /
Publicado: (2010) -
Combining active learning and semi-supervised learning techniques to extract protein interaction sentences
por: Song, Min, et al.
Publicado: (2011)