Cargando…
The tetrapeptide core of the carrier peptide Xentry is cell-penetrating: novel activatable forms of Xentry
Here we describe a structure-function analysis of the cell-penetrating peptide Xentry derived from the X-protein of the hepatitis B virus. Remarkably, the tetrapeptide core LCLR retains the cell-penetrating ability of the parental peptide LCLRPVG, as either an L- or D-enantiomer. Substitution of the...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4014984/ https://www.ncbi.nlm.nih.gov/pubmed/24811205 http://dx.doi.org/10.1038/srep04900 |
Sumario: | Here we describe a structure-function analysis of the cell-penetrating peptide Xentry derived from the X-protein of the hepatitis B virus. Remarkably, the tetrapeptide core LCLR retains the cell-penetrating ability of the parental peptide LCLRPVG, as either an L- or D-enantiomer. Substitution of the cysteine with leucine revealed that the cysteine is essential for activity. In contrast, the C-terminal arginine could be substituted in the L-isomer with lysine, histidine, glutamic acid, glutamine, and asparagine, though the resulting peptides displayed distinct cell-type-specific uptake. Substitution of the leucines in the D-isomer with other hydrophobic residues revealed that leucines are optimal for activity. Surprisingly, linear di- and tetra-peptide forms of Xentry are not cell-permeable. Protease-activatable forms of Xentry were created by fusing Xentry to itself via a protease-cleavable peptide, or by attaching a heparin mimic peptide to the N-terminus. These novel activatable forms of Xentry were only taken up by MCF-7 cells after cleavage by matrix metalloproteinase 9, and could be used to deliver drugs specifically to tumours. |
---|