Cargando…

Degradation of AIMP1/p43 Induced by Hepatitis C Virus E2 Leads to Upregulation of TGF-β Signaling and Increase in Surface Expression of gp96

Hepatitis C virus (HCV) causes chronic hepatitis leading to liver fibrosis and autoimmune diseases. AIMP1/p43 is a multifunctional protein initially known as a cofactor of aminoacyl tRNA synthetase complex. Its function includes negative regulation of TGF-β signaling and suppression of Lupus-like au...

Descripción completa

Detalles Bibliográficos
Autores principales: Kim, Min Soo, Kim, Sunghoon, Myung, Heejoon
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4015952/
https://www.ncbi.nlm.nih.gov/pubmed/24816397
http://dx.doi.org/10.1371/journal.pone.0096302
Descripción
Sumario:Hepatitis C virus (HCV) causes chronic hepatitis leading to liver fibrosis and autoimmune diseases. AIMP1/p43 is a multifunctional protein initially known as a cofactor of aminoacyl tRNA synthetase complex. Its function includes negative regulation of TGF-β signaling and suppression of Lupus-like autoimmune disease by inhibition of surface expression of gp96. HCV E2 was shown to directly interact with AIMP1/p43 by GST pulldown assay and coimmunoprecipitation. Their subcellular colocalization was observed in an immunofluorescence confocal microscopy. We showed that HCV E2 led to degradation of AIMP1/p43 in two ways. First, in the presence of HCV E2, endogenous AIMP1/p43 was shown to be degraded in an ubiquitin-dependent proteasome pathway. Second, grp78, an ER chaperone, was shown to interact with and stabilize AIMP1/p43. And HCV E2 inhibited this interaction leading to reduction of cellular AIMP1/p43. The degradation of AIMP1/p43 by HCV E2 resulted in increase of TGF-β signaling and cell surface expression of gp96. Thus we suggest that these are novel mechanisms responsible for liver fibrosis and autoimmune diseases caused by HCV.