Cargando…
MicroRNA-27a Modulates HCV Infection in Differentiated Hepatocyte-Like Cells from Adipose Tissue-Derived Mesenchymal Stem Cells
BACKGROUND AND AIMS: Despite the discovery of hepatitis C virus (HCV) entry factor, the mechanism by which it is regulated by miRNAs remains unclear. Adipose tissue-derived human mesenchymal stem cells (AT-hMSCs) have been widely used for differentiated hepatocyte-like cells (DHCs). Here, we establi...
Autores principales: | , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019502/ https://www.ncbi.nlm.nih.gov/pubmed/24824429 http://dx.doi.org/10.1371/journal.pone.0091958 |
Sumario: | BACKGROUND AND AIMS: Despite the discovery of hepatitis C virus (HCV) entry factor, the mechanism by which it is regulated by miRNAs remains unclear. Adipose tissue-derived human mesenchymal stem cells (AT-hMSCs) have been widely used for differentiated hepatocyte-like cells (DHCs). Here, we established an in vitro HCV infection model using DHCs from AT-hMSCs and identified miRNAs that modulate HCV infectivity. METHODS: AT-hMSCs were differentiated into DHCs using the conditional media, and evaluated for hepatocyte characteristics using RT-PCR, immunocytochemistry, periodic acid-Schiff staining, and a urea synthesis assay. The expression of HCV candidate receptors was also verified using immunocytochemistry. The levels of candidate miRNAs targeting HCV receptors were then determined by relative quantitative RT-PCR (rqRT-PCR). Finally, DHCs were infected using HCVcc and serum from HCV-infected patients, and infectivity of the virus was measured by rqRT-PCR and transmission electron microscopy (TEM). RESULTS: The expected changes in morphology, function and hepatic gene expression were observed during hepatic differentiation. Moreover, the expression of candidate HCV entry factors and miR-27a were altered during hepatic differentiation. The infection and replication of HCV occurred efficiently in DHCs treated with HCVcc or infected with serum from HCV-infected patients. In addition, HCV infectivity was suppressed in miR-27a-transfected DHCs, due to the inhibition of LDLR expression by miR-27a. CONCLUSIONS: Our results demonstrate that AT-hMSCs are a good source of DHCs, which are suitable for in vitro cultivation of HCV. Furthermore, these results suggest that miR-27a modulates HCV infectivity by regulating LDLR expression. |
---|