Cargando…
Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins)
Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic me...
Autores principales: | , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019568/ https://www.ncbi.nlm.nih.gov/pubmed/24823716 http://dx.doi.org/10.1371/journal.pone.0097438 |
_version_ | 1782480187975270400 |
---|---|
author | Correa, Agustín Pacheco, Sabino Mechaly, Ariel E. Obal, Gonzalo Béhar, Ghislaine Mouratou, Barbara Oppezzo, Pablo Alzari, Pedro M. Pecorari, Frédéric |
author_facet | Correa, Agustín Pacheco, Sabino Mechaly, Ariel E. Obal, Gonzalo Béhar, Ghislaine Mouratou, Barbara Oppezzo, Pablo Alzari, Pedro M. Pecorari, Frédéric |
author_sort | Correa, Agustín |
collection | PubMed |
description | Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (K(i) = 45 nM) and CelD (K(i) = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general. |
format | Online Article Text |
id | pubmed-4019568 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Public Library of Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40195682014-05-16 Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) Correa, Agustín Pacheco, Sabino Mechaly, Ariel E. Obal, Gonzalo Béhar, Ghislaine Mouratou, Barbara Oppezzo, Pablo Alzari, Pedro M. Pecorari, Frédéric PLoS One Research Article Glycosidases are associated with various human diseases. The development of efficient and specific inhibitors may provide powerful tools to modulate their activity. However, achieving high selectivity is a major challenge given that glycosidases with different functions can have similar enzymatic mechanisms and active-site architectures. As an alternative approach to small-chemical compounds, proteinaceous inhibitors might provide a better specificity by involving a larger surface area of interaction. We report here the design and characterization of proteinaceous inhibitors that specifically target endoglycosidases representative of the two major mechanistic classes; retaining and inverting glycosidases. These inhibitors consist of artificial affinity proteins, Affitins, selected against the thermophilic CelD from Clostridium thermocellum and lysozyme from hen egg. They were obtained from libraries of Sac7d variants, which involve either the randomization of a surface or the randomization of a surface and an artificially-extended loop. Glycosidase binders exhibited affinities in the nanomolar range with no cross-recognition, with efficient inhibition of lysozyme (K(i) = 45 nM) and CelD (K(i) = 95 and 111 nM), high expression yields in Escherichia coli, solubility, and thermal stabilities up to 81.1°C. The crystal structures of glycosidase-Affitin complexes validate our library designs. We observed that Affitins prevented substrate access by two modes of binding; covering or penetrating the catalytic site via the extended loop. In addition, Affitins formed salt-bridges with residues essential for enzymatic activity. These results lead us to propose the use of Affitins as versatile selective glycosidase inhibitors and, potentially, as enzymatic inhibitors in general. Public Library of Science 2014-05-13 /pmc/articles/PMC4019568/ /pubmed/24823716 http://dx.doi.org/10.1371/journal.pone.0097438 Text en © 2014 Correa et al http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are properly credited. |
spellingShingle | Research Article Correa, Agustín Pacheco, Sabino Mechaly, Ariel E. Obal, Gonzalo Béhar, Ghislaine Mouratou, Barbara Oppezzo, Pablo Alzari, Pedro M. Pecorari, Frédéric Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title | Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title_full | Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title_fullStr | Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title_full_unstemmed | Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title_short | Potent and Specific Inhibition of Glycosidases by Small Artificial Binding Proteins (Affitins) |
title_sort | potent and specific inhibition of glycosidases by small artificial binding proteins (affitins) |
topic | Research Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4019568/ https://www.ncbi.nlm.nih.gov/pubmed/24823716 http://dx.doi.org/10.1371/journal.pone.0097438 |
work_keys_str_mv | AT correaagustin potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT pachecosabino potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT mechalyariele potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT obalgonzalo potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT beharghislaine potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT mouratoubarbara potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT oppezzopablo potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT alzaripedrom potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins AT pecorarifrederic potentandspecificinhibitionofglycosidasesbysmallartificialbindingproteinsaffitins |