Cargando…

Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics

BACKGROUND: The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal number...

Descripción completa

Detalles Bibliográficos
Autores principales: Suspène, R, Caval, V, Henry, M, Bouzidi, M S, Wain-Hobson, S, Vartanian, J-P
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021520/
https://www.ncbi.nlm.nih.gov/pubmed/24691422
http://dx.doi.org/10.1038/bjc.2014.176
_version_ 1782316251207434240
author Suspène, R
Caval, V
Henry, M
Bouzidi, M S
Wain-Hobson, S
Vartanian, J-P
author_facet Suspène, R
Caval, V
Henry, M
Bouzidi, M S
Wain-Hobson, S
Vartanian, J-P
author_sort Suspène, R
collection PubMed
description BACKGROUND: The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5′TpC context. These can be copied as G->A transitions in the 5′GpA context. METHODS: DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. RESULTS: Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5′GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. CONCLUSIONS: Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼10(4)–10(5) base substitutions per cancer genome, or 0.003–0.03 kb(−1). By contrast, the 3DPCR error rate is of the order of 4–20 kb(−1) owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5′GpC represent artefacts.
format Online
Article
Text
id pubmed-4021520
institution National Center for Biotechnology Information
language English
publishDate 2014
publisher Nature Publishing Group
record_format MEDLINE/PubMed
spelling pubmed-40215202015-05-13 Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics Suspène, R Caval, V Henry, M Bouzidi, M S Wain-Hobson, S Vartanian, J-P Br J Cancer Genetics and Genomics BACKGROUND: The revolution in cancer genomics shows that the dominant mutations are CG->TA transitions. The sources of these mutations are probably two host cell cytidine deaminases APOBEC3A and APOBEC3B. The former in particular can access nuclear DNA and monotonously introduce phenomenal numbers of C->T mutations in the signature 5′TpC context. These can be copied as G->A transitions in the 5′GpA context. METHODS: DNA hypermutated by an APOBEC3 enzyme can be recovered by a technique called 3DPCR, which stands for differential DNA denaturation PCR. This method exploits the fact that APOBEC3-edited DNA is richer in A+T compared with the reference. We explore explicitly 3DPCR error using cloned DNA. RESULTS: Here we show that the technique has a higher error rate compared with standard PCR and can generate DNA strands containing both C->T and G->A mutations in a 5′GpCpR context. Sequences with similar traits have been recovered from human tumour DNA using 3DPCR. CONCLUSIONS: Differential DNA denaturation PCR cannot be used to identify fixed C->T transitions in cancer genomes. Presently, the overall mutation frequency is ∼10(4)–10(5) base substitutions per cancer genome, or 0.003–0.03 kb(−1). By contrast, the 3DPCR error rate is of the order of 4–20 kb(−1) owing to constant selection for AT DNA and PCR-mediated recombination. Accordingly, sequences recovered by 3DPCR harbouring mixed C->T and G->A mutations associated with the 5′GpC represent artefacts. Nature Publishing Group 2014-05-13 2014-04-01 /pmc/articles/PMC4021520/ /pubmed/24691422 http://dx.doi.org/10.1038/bjc.2014.176 Text en Copyright © 2014 Cancer Research UK http://creativecommons.org/licenses/by-nc-sa/3.0/ From twelve months after its original publication, this work is licensed under the Creative Commons Attribution-NonCommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/
spellingShingle Genetics and Genomics
Suspène, R
Caval, V
Henry, M
Bouzidi, M S
Wain-Hobson, S
Vartanian, J-P
Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title_full Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title_fullStr Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title_full_unstemmed Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title_short Erroneous identification of APOBEC3-edited chromosomal DNA in cancer genomics
title_sort erroneous identification of apobec3-edited chromosomal dna in cancer genomics
topic Genetics and Genomics
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4021520/
https://www.ncbi.nlm.nih.gov/pubmed/24691422
http://dx.doi.org/10.1038/bjc.2014.176
work_keys_str_mv AT suspener erroneousidentificationofapobec3editedchromosomaldnaincancergenomics
AT cavalv erroneousidentificationofapobec3editedchromosomaldnaincancergenomics
AT henrym erroneousidentificationofapobec3editedchromosomaldnaincancergenomics
AT bouzidims erroneousidentificationofapobec3editedchromosomaldnaincancergenomics
AT wainhobsons erroneousidentificationofapobec3editedchromosomaldnaincancergenomics
AT vartanianjp erroneousidentificationofapobec3editedchromosomaldnaincancergenomics