Cargando…

MAP1B rescues LRRK2 mutant-mediated cytotoxicity

Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of dominant and sporadic Parkinson’s disease (PD), a common neurodegenerative disorder. Yeast-two-hybrid screening using human LRRK2 kinase domain as bait identified microtubule associated protein 1B (MAP1B) as a LRRK2 interact...

Descripción completa

Detalles Bibliográficos
Autores principales: Chan, Sharon L, Chua, Ling-Ling, Angeles, Dario C, Tan, Eng-King
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4022373/
https://www.ncbi.nlm.nih.gov/pubmed/24754922
http://dx.doi.org/10.1186/1756-6606-7-29
Descripción
Sumario:Leucine-rich repeat kinase 2 (LRRK2) mutations are the most common cause of dominant and sporadic Parkinson’s disease (PD), a common neurodegenerative disorder. Yeast-two-hybrid screening using human LRRK2 kinase domain as bait identified microtubule associated protein 1B (MAP1B) as a LRRK2 interactor. The interacting domains were LRRK2 kinase and the light chain portion of MAP1B (LC1). LRRK2 + LC1 interaction resulted in LRRK2 kinase inhibition. LRRK2 mutants (R1441C, G2019S and I2020T) exhibited decreased endogenous LC1 expression and its co-expression with LC1 rescued LRRK2 mutant-mediated toxicity. This study presented the first data on the effects of LRRK2 + LC1 interaction and also suggested that LCI possibly rescued LRRK2 mutant-induced cytotoxicity by inhibiting LRRK2 kinase activity. Compounds that upregulate LC1 expression may therefore hold therapeutic potential for LRRK2-linked diseases.