Cargando…

A TALEN-based strategy for efficient bi-allelic miRNA ablation in human cells

Significant progress in the functional understanding of microRNAs (miRNAs) has been made in mice, but a need remains to develop efficient tools for bi-allelic knockouts of miRNA in the human genome. Transcription activator-like effector nucleases (TALENs) provide an exciting platform for targeted ge...

Descripción completa

Detalles Bibliográficos
Autores principales: Uhde-Stone, Claudia, Sarkar, Nandita, Antes, Travis, Otoc, Nicole, Kim, Young, Jiang, Yan J., Lu, Biao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Cold Spring Harbor Laboratory Press 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4024647/
https://www.ncbi.nlm.nih.gov/pubmed/24717974
http://dx.doi.org/10.1261/rna.042010.113
Descripción
Sumario:Significant progress in the functional understanding of microRNAs (miRNAs) has been made in mice, but a need remains to develop efficient tools for bi-allelic knockouts of miRNA in the human genome. Transcription activator-like effector nucleases (TALENs) provide an exciting platform for targeted gene ablation in cultured human cells, but bi-allelic modifications induced by TALENs alone occur at low frequency, making screening for double knockouts a tedious task. Here, we present an approach that is highly efficient in bi-allelic miRNA ablation in the human genome by combining TALENs targeting to the miRNA seed region with a homologous recombination donor vector and a positive selection strategy. A pilot test of this approach demonstrates bi-allelic miR-21 gene disruption at high frequency (∼87%) in cultured HEK293 cells. Analysis of three independent clones showed a total loss of miR-21 expression. Phenotypical analysis revealed increased miR-21 target gene expression, reduced cell proliferation, and alterations of global miRNA expression profiles. Taken together, our study reveals a feasible and efficient approach for bi-allelic miRNA ablation in cultured human cells and demonstrates its usefulness in elucidating miRNA function in human cells.