Cargando…
Examination of Structure–Activity Relationship of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers
[Image: see text] Chemokine receptors and their ligands play a central role in cancer metastasis, inflammatory disorders, and viral infections. Viologen dendrimers (VGD) emerged recently as a promising class of synthetic polycationic ligands for chemokine receptor CXCR4. The objective of this study...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Chemical
Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032196/ https://www.ncbi.nlm.nih.gov/pubmed/24821372 http://dx.doi.org/10.1021/bc500191q |
_version_ | 1782317607347552256 |
---|---|
author | Li, Jing Lepadatu, Ana-Maria Zhu, Yu Ciobanu, Marius Wang, Yan Asaftei, Simona C. Oupický, David |
author_facet | Li, Jing Lepadatu, Ana-Maria Zhu, Yu Ciobanu, Marius Wang, Yan Asaftei, Simona C. Oupický, David |
author_sort | Li, Jing |
collection | PubMed |
description | [Image: see text] Chemokine receptors and their ligands play a central role in cancer metastasis, inflammatory disorders, and viral infections. Viologen dendrimers (VGD) emerged recently as a promising class of synthetic polycationic ligands for chemokine receptor CXCR4. The objective of this study was to evaluate the potential of VGD as novel dual-function polycations capable of simultaneous CXCR4 antagonism and gene delivery. As part of our systematic studies, we have synthesized a library of VGD with differences in molecular architecture, number of positive charges, and type of capping group. The ability of VGD to condense DNA was evaluated, and physicochemical and biological properties of the resulting polyplexes were studied. We have evaluated the effect of VGD surface charge, size, capping group, and molecular architecture on physicochemical properties of polyplexes, transfection efficiency, CXCR4 antagonism, and cytotoxicity in human epithelial osteosarcoma (U2OS) and in human liver hepatocellular carcinoma (HepG2) cells. We found that properties and behavior of the polyplexes are most dependent on the number of positive charges and molecular weight of VGD and to a lesser extent on the type of a capping group. Using TNFα plasmid, we have demonstrated that VGD prevents CXCR4-mediated cancer cell invasion and facilitates TNFα-mediated cancer cell killing. Such dual-function carriers have potential to enhance the overall therapeutic outcomes of cancer gene therapy. |
format | Online Article Text |
id | pubmed-4032196 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American Chemical
Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-40321962015-05-12 Examination of Structure–Activity Relationship of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers Li, Jing Lepadatu, Ana-Maria Zhu, Yu Ciobanu, Marius Wang, Yan Asaftei, Simona C. Oupický, David Bioconjug Chem [Image: see text] Chemokine receptors and their ligands play a central role in cancer metastasis, inflammatory disorders, and viral infections. Viologen dendrimers (VGD) emerged recently as a promising class of synthetic polycationic ligands for chemokine receptor CXCR4. The objective of this study was to evaluate the potential of VGD as novel dual-function polycations capable of simultaneous CXCR4 antagonism and gene delivery. As part of our systematic studies, we have synthesized a library of VGD with differences in molecular architecture, number of positive charges, and type of capping group. The ability of VGD to condense DNA was evaluated, and physicochemical and biological properties of the resulting polyplexes were studied. We have evaluated the effect of VGD surface charge, size, capping group, and molecular architecture on physicochemical properties of polyplexes, transfection efficiency, CXCR4 antagonism, and cytotoxicity in human epithelial osteosarcoma (U2OS) and in human liver hepatocellular carcinoma (HepG2) cells. We found that properties and behavior of the polyplexes are most dependent on the number of positive charges and molecular weight of VGD and to a lesser extent on the type of a capping group. Using TNFα plasmid, we have demonstrated that VGD prevents CXCR4-mediated cancer cell invasion and facilitates TNFα-mediated cancer cell killing. Such dual-function carriers have potential to enhance the overall therapeutic outcomes of cancer gene therapy. American Chemical Society 2014-05-12 2014-05-21 /pmc/articles/PMC4032196/ /pubmed/24821372 http://dx.doi.org/10.1021/bc500191q Text en Copyright © 2014 American Chemical Society |
spellingShingle | Li, Jing Lepadatu, Ana-Maria Zhu, Yu Ciobanu, Marius Wang, Yan Asaftei, Simona C. Oupický, David Examination of Structure–Activity Relationship of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title | Examination of Structure–Activity Relationship
of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title_full | Examination of Structure–Activity Relationship
of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title_fullStr | Examination of Structure–Activity Relationship
of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title_full_unstemmed | Examination of Structure–Activity Relationship
of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title_short | Examination of Structure–Activity Relationship
of Viologen-Based Dendrimers as CXCR4 Antagonists and Gene Carriers |
title_sort | examination of structure–activity relationship
of viologen-based dendrimers as cxcr4 antagonists and gene carriers |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032196/ https://www.ncbi.nlm.nih.gov/pubmed/24821372 http://dx.doi.org/10.1021/bc500191q |
work_keys_str_mv | AT lijing examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT lepadatuanamaria examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT zhuyu examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT ciobanumarius examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT wangyan examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT asafteisimonac examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers AT oupickydavid examinationofstructureactivityrelationshipofviologenbaseddendrimersascxcr4antagonistsandgenecarriers |