Cargando…

MMTV-Espl1 Transgenic Mice Develop Aneuploid, Estrogen Receptor Alpha (ERα)-Positive Mammary Adenocarcinomas

Separase, a protease encoded by the ESPL1 gene, cleaves the chromosomal cohesin during mitosis. Separase protein and transcripts are overexpressed in a wide range of human cancers (Meyer et al., Clin Cancer Res 2009; 15: 2703-2710). To investigate the physiological consequence of Separase overexpres...

Descripción completa

Detalles Bibliográficos
Autores principales: Mukherjee, Malini, Ge, Gouqing, Zhang, Nenggang, Edwards, David G., Sumazin, Pavel, Sharan, Shyam K., Rao, Pulivarthi H., Medina, Daniel, Pati, Debananda
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2013
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4032816/
https://www.ncbi.nlm.nih.gov/pubmed/24276237
http://dx.doi.org/10.1038/onc.2013.493
Descripción
Sumario:Separase, a protease encoded by the ESPL1 gene, cleaves the chromosomal cohesin during mitosis. Separase protein and transcripts are overexpressed in a wide range of human cancers (Meyer et al., Clin Cancer Res 2009; 15: 2703-2710). To investigate the physiological consequence of Separase overexpression in animals, we have generated a transgenic MMTVEspl1 mouse model that overexpresses Separase protein in the mammary glands. MMTV-Espl1 mice in a C57BL/6 genetic background develop aggressive, highly aneuploid, and estrogen receptor alpha positive (ERα+) mammary adenocarcinomas with an 80% penetrance. The mammary tumors caused by overexpression of Separase, alone or combined with p53 heterozygosity, in mammary epithelium mimic several aspects of the most aggressive forms of human breast cancer, including high levels of genetic instability, cell cycle defects, poor differentiation, distant metastasis, and metaplasia. Histopathologically, MMTV-Espl1 tumors are highly heterogeneous showing features of both luminal as well as basal subtypes of breast cancers, with aggressive disease phenotype. In addition to aneuploidy, Separase overexpression results in chromosomal instability (CIN) including premature chromatid separation (PCS), lagging chromosomes, anaphase bridges, micronuclei, centrosome amplification, multi nucleated cells, gradual accumulation of DNA damage, and progressive loss of tumor suppressors p53 and cadherin gene loci. These results suggest that Separase overexpressing mammary cells are not only susceptible to chromosomal missegregation-induced aneuploidy but also other genetic instabilities including DNA damage and loss of key tumor suppressor gene loci, which in combination can initiate tumorigenesis and disease progression.