Cargando…
Overcoming co-product inhibition in the nicotinamide independent asymmetric bioreduction of activated C=C-bonds using flavin-dependent ene-reductases
Eleven flavoproteins from the old yellow enzyme family were found to catalyze the disproportionation (“dismutation”) of conjugated enones. Incomplete conversions, which were attributed to enzyme inhibition by the co-product phenol could be circumvented via in situ co-product removal by scavenging th...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BlackWell Publishing Ltd
2013
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4034509/ https://www.ncbi.nlm.nih.gov/pubmed/23794404 http://dx.doi.org/10.1002/bit.24981 |
Sumario: | Eleven flavoproteins from the old yellow enzyme family were found to catalyze the disproportionation (“dismutation”) of conjugated enones. Incomplete conversions, which were attributed to enzyme inhibition by the co-product phenol could be circumvented via in situ co-product removal by scavenging the phenol using the polymeric adsorbent MP-carbonate. The optimized system allowed to reduce an alkene activated by ester groups in a “coupled-substrate” approach via nicotinamide-free hydrogen transfer with >90% conversion and complete stereoselectivity. |
---|