Cargando…
Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P
BACKGROUND: Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that s...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038377/ https://www.ncbi.nlm.nih.gov/pubmed/24885776 http://dx.doi.org/10.1186/1743-422X-11-86 |
_version_ | 1782318339595436032 |
---|---|
author | Mao, Xinliang Li, Xifang Mao, Xinjun Huang, Zhiwen Zhang, Chengcheng Zhang, Wenjun Wu, Jianguo Li, Gang |
author_facet | Mao, Xinliang Li, Xifang Mao, Xinjun Huang, Zhiwen Zhang, Chengcheng Zhang, Wenjun Wu, Jianguo Li, Gang |
author_sort | Mao, Xinliang |
collection | PubMed |
description | BACKGROUND: Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS: By analyzing the sequence and structure of the 5′ untranslated region of HCV RNA, a putative cleavage site (C(67)-G(68)) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C(67)) was constructed by linking a custom guide sequence (GS) to the 3′ termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a “disabled” ribozyme (i.e. M1GS-HCV/C(67)*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C(67)) showed almost the same bioactivities with M1GS-HCV/C(67), demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION: Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV. |
format | Online Article Text |
id | pubmed-4038377 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40383772014-05-30 Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P Mao, Xinliang Li, Xifang Mao, Xinjun Huang, Zhiwen Zhang, Chengcheng Zhang, Wenjun Wu, Jianguo Li, Gang Virol J Research BACKGROUND: Hepatitis C virus (HCV) is a human pathogen causing chronic liver disease in about 200 million people worldwide. However, HCV resistance to interferon treatment is one of the important clinical implications, suggesting the necessity to seek new therapies. It has already been shown that some forms of the catalytic RNA moiety from E. coli RNase P, M1 RNA, can be introduced into the cytoplasm of mammalian cells for the purpose of carrying out targeted cleavage of mRNA molecules. Our study is to use an engineering M1 RNA (i.e. M1GS) for inhibiting HCV replication and demonstrates the utility of this ribozyme for antiviral applications. RESULTS: By analyzing the sequence and structure of the 5′ untranslated region of HCV RNA, a putative cleavage site (C(67)-G(68)) was selected for ribozyme designing. Based on the flanking sequence of this site, a targeting M1GS ribozyme (M1GS-HCV/C(67)) was constructed by linking a custom guide sequence (GS) to the 3′ termini of catalytic RNA subunit (M1 RNA) of RNase P from Escherichia coli through an 88 nt-long bridge sequence. In vitro cleavage assays confirmed that the engineered M1GS ribozyme cleaved the targeted RNA specifically. Moreover, ~85% reduction in the expression levels of HCV proteins and >1000-fold reduction in viral growth were observed in supernatant of cultured cells that transfected the functional ribozyme. In contrast, the HCV core expression and viral growth were not significantly affected by a “disabled” ribozyme (i.e. M1GS-HCV/C(67)*). Moreover, cholesterol-conjugated M1GS ribozyme (i.e. Chol-M1GS-HCV/C(67)) showed almost the same bioactivities with M1GS-HCV/C(67), demonstrating the potential to improve in vivo pharmacokinetic properties of M1GS-based RNA therapeutics. CONCLUSION: Our results provide direct evidence that the M1GS ribozyme can function as an antiviral agent and effectively inhibit gene expression and multiplication of HCV. BioMed Central 2014-05-13 /pmc/articles/PMC4038377/ /pubmed/24885776 http://dx.doi.org/10.1186/1743-422X-11-86 Text en Copyright © 2014 Mao et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited. The Creative Commons Public Domain Dedication waiver (http://creativecommons.org/publicdomain/zero/1.0/) applies to the data made available in this article, unless otherwise stated. |
spellingShingle | Research Mao, Xinliang Li, Xifang Mao, Xinjun Huang, Zhiwen Zhang, Chengcheng Zhang, Wenjun Wu, Jianguo Li, Gang Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title | Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title_full | Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title_fullStr | Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title_full_unstemmed | Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title_short | Inhibition of hepatitis C virus by an M1GS ribozyme derived from the catalytic RNA subunit of Escherichia coli RNase P |
title_sort | inhibition of hepatitis c virus by an m1gs ribozyme derived from the catalytic rna subunit of escherichia coli rnase p |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4038377/ https://www.ncbi.nlm.nih.gov/pubmed/24885776 http://dx.doi.org/10.1186/1743-422X-11-86 |
work_keys_str_mv | AT maoxinliang inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT lixifang inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT maoxinjun inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT huangzhiwen inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT zhangchengcheng inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT zhangwenjun inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT wujianguo inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep AT ligang inhibitionofhepatitiscvirusbyanm1gsribozymederivedfromthecatalyticrnasubunitofescherichiacolirnasep |