Cargando…

Polymer ferroelectric field-effect memory device with SnO channel layer exhibits record hole mobility

Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent...

Descripción completa

Detalles Bibliográficos
Autores principales: Caraveo-Frescas, J. A., Khan, M. A., Alshareef, H. N.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4050383/
https://www.ncbi.nlm.nih.gov/pubmed/24912617
http://dx.doi.org/10.1038/srep05243
Descripción
Sumario:Here we report for the first time a hybrid p-channel polymer ferroelectric field-effect transistor memory device with record mobility. The memory device, fabricated at 200°C on both plastic polyimide and glass substrates, uses ferroelectric polymer P(VDF-TrFE) as the gate dielectric and transparent p-type oxide (SnO) as the active channel layer. A record mobility of 3.3 cm(2)V(−1)s(−1), large memory window (∼16 V), low read voltages (∼−1 V), and excellent retention characteristics up to 5000 sec have been achieved. The mobility achieved in our devices is over 10 times higher than previously reported polymer ferroelectric field-effect transistor memory with p-type channel. This demonstration opens the door for the development of non-volatile memory devices based on dual channel for emerging transparent and flexible electronic devices.