Cargando…
A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that add...
Autores principales: | , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2012
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053744/ https://www.ncbi.nlm.nih.gov/pubmed/22937800 http://dx.doi.org/10.1186/gb-2012-13-8-r76 |
_version_ | 1782320429782794240 |
---|---|
author | Hosur, Raghavendra Peng, Jian Vinayagam, Arunachalam Stelzl, Ulrich Xu, Jinbo Perrimon, Norbert Bienkowska, Jadwiga Berger, Bonnie |
author_facet | Hosur, Raghavendra Peng, Jian Vinayagam, Arunachalam Stelzl, Ulrich Xu, Jinbo Perrimon, Norbert Bienkowska, Jadwiga Berger, Bonnie |
author_sort | Hosur, Raghavendra |
collection | PubMed |
description | Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu. |
format | Online Article Text |
id | pubmed-4053744 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2012 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40537442014-06-13 A computational framework for boosting confidence in high-throughput protein-protein interaction datasets Hosur, Raghavendra Peng, Jian Vinayagam, Arunachalam Stelzl, Ulrich Xu, Jinbo Perrimon, Norbert Bienkowska, Jadwiga Berger, Bonnie Genome Biol Method Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu. BioMed Central 2012 2012-08-31 /pmc/articles/PMC4053744/ /pubmed/22937800 http://dx.doi.org/10.1186/gb-2012-13-8-r76 Text en Copyright © 2012 Hosur et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Method Hosur, Raghavendra Peng, Jian Vinayagam, Arunachalam Stelzl, Ulrich Xu, Jinbo Perrimon, Norbert Bienkowska, Jadwiga Berger, Bonnie A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title | A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title_full | A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title_fullStr | A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title_full_unstemmed | A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title_short | A computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
title_sort | computational framework for boosting confidence in high-throughput protein-protein interaction datasets |
topic | Method |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053744/ https://www.ncbi.nlm.nih.gov/pubmed/22937800 http://dx.doi.org/10.1186/gb-2012-13-8-r76 |
work_keys_str_mv | AT hosurraghavendra acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT pengjian acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT vinayagamarunachalam acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT stelzlulrich acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT xujinbo acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT perrimonnorbert acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT bienkowskajadwiga acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT bergerbonnie acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT hosurraghavendra computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT pengjian computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT vinayagamarunachalam computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT stelzlulrich computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT xujinbo computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT perrimonnorbert computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT bienkowskajadwiga computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets AT bergerbonnie computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets |