Cargando…

A computational framework for boosting confidence in high-throughput protein-protein interaction datasets

Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that add...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosur, Raghavendra, Peng, Jian, Vinayagam, Arunachalam, Stelzl, Ulrich, Xu, Jinbo, Perrimon, Norbert, Bienkowska, Jadwiga, Berger, Bonnie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2012
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053744/
https://www.ncbi.nlm.nih.gov/pubmed/22937800
http://dx.doi.org/10.1186/gb-2012-13-8-r76
_version_ 1782320429782794240
author Hosur, Raghavendra
Peng, Jian
Vinayagam, Arunachalam
Stelzl, Ulrich
Xu, Jinbo
Perrimon, Norbert
Bienkowska, Jadwiga
Berger, Bonnie
author_facet Hosur, Raghavendra
Peng, Jian
Vinayagam, Arunachalam
Stelzl, Ulrich
Xu, Jinbo
Perrimon, Norbert
Bienkowska, Jadwiga
Berger, Bonnie
author_sort Hosur, Raghavendra
collection PubMed
description Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu.
format Online
Article
Text
id pubmed-4053744
institution National Center for Biotechnology Information
language English
publishDate 2012
publisher BioMed Central
record_format MEDLINE/PubMed
spelling pubmed-40537442014-06-13 A computational framework for boosting confidence in high-throughput protein-protein interaction datasets Hosur, Raghavendra Peng, Jian Vinayagam, Arunachalam Stelzl, Ulrich Xu, Jinbo Perrimon, Norbert Bienkowska, Jadwiga Berger, Bonnie Genome Biol Method Improving the quality and coverage of the protein interactome is of tantamount importance for biomedical research, particularly given the various sources of uncertainty in high-throughput techniques. We introduce a structure-based framework, Coev2Net, for computing a single confidence score that addresses both false-positive and false-negative rates. Coev2Net is easily applied to thousands of binary protein interactions and has superior predictive performance over existing methods. We experimentally validate selected high-confidence predictions in the human MAPK network and show that predicted interfaces are enriched for cancer -related or damaging SNPs. Coev2Net can be downloaded at http://struct2net.csail.mit.edu. BioMed Central 2012 2012-08-31 /pmc/articles/PMC4053744/ /pubmed/22937800 http://dx.doi.org/10.1186/gb-2012-13-8-r76 Text en Copyright © 2012 Hosur et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
spellingShingle Method
Hosur, Raghavendra
Peng, Jian
Vinayagam, Arunachalam
Stelzl, Ulrich
Xu, Jinbo
Perrimon, Norbert
Bienkowska, Jadwiga
Berger, Bonnie
A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title_full A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title_fullStr A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title_full_unstemmed A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title_short A computational framework for boosting confidence in high-throughput protein-protein interaction datasets
title_sort computational framework for boosting confidence in high-throughput protein-protein interaction datasets
topic Method
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4053744/
https://www.ncbi.nlm.nih.gov/pubmed/22937800
http://dx.doi.org/10.1186/gb-2012-13-8-r76
work_keys_str_mv AT hosurraghavendra acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT pengjian acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT vinayagamarunachalam acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT stelzlulrich acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT xujinbo acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT perrimonnorbert acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT bienkowskajadwiga acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT bergerbonnie acomputationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT hosurraghavendra computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT pengjian computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT vinayagamarunachalam computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT stelzlulrich computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT xujinbo computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT perrimonnorbert computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT bienkowskajadwiga computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets
AT bergerbonnie computationalframeworkforboostingconfidenceinhighthroughputproteinproteininteractiondatasets