Cargando…
Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels
INTRODUCTION: Emerging evidence suggests that decreased adult hippocampal neurogenesis represents an early critical event in the course of Alzheimer’s disease (AD). In mice, adult neurogenesis is reduced by knock-in alleles for human apolipoprotein E (ApoE) ∈4. Decreased dentate gyrus (DG) neural pr...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
BioMed Central
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054957/ https://www.ncbi.nlm.nih.gov/pubmed/24735568 http://dx.doi.org/10.1186/alzrt250 |
_version_ | 1782320572353478656 |
---|---|
author | Wesnes, Keith A Annas, Peter Basun, Hans Edgar, Chris Blennow, Kaj |
author_facet | Wesnes, Keith A Annas, Peter Basun, Hans Edgar, Chris Blennow, Kaj |
author_sort | Wesnes, Keith A |
collection | PubMed |
description | INTRODUCTION: Emerging evidence suggests that decreased adult hippocampal neurogenesis represents an early critical event in the course of Alzheimer’s disease (AD). In mice, adult neurogenesis is reduced by knock-in alleles for human apolipoprotein E (ApoE) ∈4. Decreased dentate gyrus (DG) neural progenitor cells proliferation has been observed in the triple-transgenic mouse model of AD (3xTg-AD); this reduction being directly associated with the presence of amyloid-β (Aβ) plaques and an increase in the number of Aβ-containing neurons in the hippocampus. Cognitive tasks involving difficult pattern separations have been shown to reflect DG activity and thus potentially neurogenesis in both animals and man. This study involved the administration of a pattern separation paradigm to Alzheimer’s patients to investigate relationships between task performance and both ApoE status and cerebrospinal fluid (CSF) Aβ42 levels. METHODS: The CDR System pattern separation task involves the presentation of pictures that must later be discriminated from closely similar pictures. This paper presents pattern separation data from 66 mild to moderate AD patients, of which 50 were genotyped and 65 in whom CSF Aβ42 was measured. RESULTS: ApoE ∈4 homozygotes were not compromised on the easy pattern separations compared with the other patients, but they were statistically significantly poorer at the difficult separations. In all patients CSF Aβ42 correlated significantly with the ability to make the difficult discriminations, but not easier discriminations. Pattern separation speed correlated negatively with CSF Aβ42, and thus the association was not due to increased impulsivity. CONCLUSIONS: These are, to our knowledge, the first human pattern separation data to suggest a possible genetic link to poor hippocampal neurogenesis in AD, as well as a relationship to Aβ42. Therapies which target neurogenesis may thus be useful in preventing the early stages of AD, notably in ApoE ∈4 homocygotes. |
format | Online Article Text |
id | pubmed-4054957 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | BioMed Central |
record_format | MEDLINE/PubMed |
spelling | pubmed-40549572014-06-14 Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels Wesnes, Keith A Annas, Peter Basun, Hans Edgar, Chris Blennow, Kaj Alzheimers Res Ther Research INTRODUCTION: Emerging evidence suggests that decreased adult hippocampal neurogenesis represents an early critical event in the course of Alzheimer’s disease (AD). In mice, adult neurogenesis is reduced by knock-in alleles for human apolipoprotein E (ApoE) ∈4. Decreased dentate gyrus (DG) neural progenitor cells proliferation has been observed in the triple-transgenic mouse model of AD (3xTg-AD); this reduction being directly associated with the presence of amyloid-β (Aβ) plaques and an increase in the number of Aβ-containing neurons in the hippocampus. Cognitive tasks involving difficult pattern separations have been shown to reflect DG activity and thus potentially neurogenesis in both animals and man. This study involved the administration of a pattern separation paradigm to Alzheimer’s patients to investigate relationships between task performance and both ApoE status and cerebrospinal fluid (CSF) Aβ42 levels. METHODS: The CDR System pattern separation task involves the presentation of pictures that must later be discriminated from closely similar pictures. This paper presents pattern separation data from 66 mild to moderate AD patients, of which 50 were genotyped and 65 in whom CSF Aβ42 was measured. RESULTS: ApoE ∈4 homozygotes were not compromised on the easy pattern separations compared with the other patients, but they were statistically significantly poorer at the difficult separations. In all patients CSF Aβ42 correlated significantly with the ability to make the difficult discriminations, but not easier discriminations. Pattern separation speed correlated negatively with CSF Aβ42, and thus the association was not due to increased impulsivity. CONCLUSIONS: These are, to our knowledge, the first human pattern separation data to suggest a possible genetic link to poor hippocampal neurogenesis in AD, as well as a relationship to Aβ42. Therapies which target neurogenesis may thus be useful in preventing the early stages of AD, notably in ApoE ∈4 homocygotes. BioMed Central 2014-04-15 /pmc/articles/PMC4054957/ /pubmed/24735568 http://dx.doi.org/10.1186/alzrt250 Text en Copyright © 2014 Wesnes et al.; licensee BioMed Central Ltd. http://creativecommons.org/licenses/by/2.0 This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Wesnes, Keith A Annas, Peter Basun, Hans Edgar, Chris Blennow, Kaj Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title | Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title_full | Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title_fullStr | Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title_full_unstemmed | Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title_short | Performance on a pattern separation task by Alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein E ∈4 status and cerebrospinal fluid amyloid-β42 levels |
title_sort | performance on a pattern separation task by alzheimer’s patients shows possible links between disrupted dentate gyrus activity and apolipoprotein e ∈4 status and cerebrospinal fluid amyloid-β42 levels |
topic | Research |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4054957/ https://www.ncbi.nlm.nih.gov/pubmed/24735568 http://dx.doi.org/10.1186/alzrt250 |
work_keys_str_mv | AT wesneskeitha performanceonapatternseparationtaskbyalzheimerspatientsshowspossiblelinksbetweendisrupteddentategyrusactivityandapolipoproteine4statusandcerebrospinalfluidamyloidb42levels AT annaspeter performanceonapatternseparationtaskbyalzheimerspatientsshowspossiblelinksbetweendisrupteddentategyrusactivityandapolipoproteine4statusandcerebrospinalfluidamyloidb42levels AT basunhans performanceonapatternseparationtaskbyalzheimerspatientsshowspossiblelinksbetweendisrupteddentategyrusactivityandapolipoproteine4statusandcerebrospinalfluidamyloidb42levels AT edgarchris performanceonapatternseparationtaskbyalzheimerspatientsshowspossiblelinksbetweendisrupteddentategyrusactivityandapolipoproteine4statusandcerebrospinalfluidamyloidb42levels AT blennowkaj performanceonapatternseparationtaskbyalzheimerspatientsshowspossiblelinksbetweendisrupteddentategyrusactivityandapolipoproteine4statusandcerebrospinalfluidamyloidb42levels |