Cargando…

Silencing [Formula: see text] Rescues Tau Pathologies and Memory Deficits through Rescuing PP2A and Inhibiting GSK-3β Signaling in Human Tau Transgenic Mice

Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer’s disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgeni...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Yao, Ma, Rong-Hong, Li, Xia-Chun, Zhang, Jia-Yu, Shi, Hai-Rong, Wei, Wei, Luo, Dan-Ju, Wang, Qun, Wang, Jian-Zhi, Liu, Gong-Ping
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4060416/
https://www.ncbi.nlm.nih.gov/pubmed/24987368
http://dx.doi.org/10.3389/fnagi.2014.00123
Descripción
Sumario:Increase of inhibitor-2 of protein phosphatase-2A [Formula: see text] is associated with protein phosphatase-2A (PP2A) inhibition and tau hyperphosphorylation in Alzheimer’s disease (AD). Down-regulating [Formula: see text] attenuated amyloidogenesis and improved the cognitive functions in transgenic mice expressing amyloid precursor protein (tg2576). Here, we found that silencing [Formula: see text] by hippocampal infusion of [Formula: see text] down-regulated [Formula: see text] (~45%) with reduction of tau phosphorylation/accumulation, improvement of memory deficits, and dendritic plasticity in 12-month-old human tau transgenic mice. Silencing [Formula: see text] not only restored PP2A activity but also inhibited glycogen synthase kinase-3β (GSK-3β) with a significant activation of protein kinase A (PKA) and Akt. In HEK293/tau and N2a/tau cells, silencing [Formula: see text] by [Formula: see text] also significantly reduced tau hyperphosphorylation with restoration of PP2A activity and inhibition of GSK-3β, demonstrated by the decreased GSK-3β total protein and mRNA levels, and the increased inhibitory phosphorylation of GSK-3β at serine-9. Furthermore, activation of PKA but not Akt mediated the inhibition of GSK-3β by [Formula: see text] silencing. We conclude that targeting [Formula: see text] can improve tau pathologies and memory deficits in human tau transgenic mice, and activation of PKA contributes to GSK-3β inhibition induced by silencing [Formula: see text] in vitro, suggesting that [Formula: see text] is a promising multiple target of AD.