Cargando…
Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy
BACKGROUND: Androgen-deprivation therapy (ADT) is standard treatment for locally advanced or metastatic prostate cancer (PCa). Many patients develop castration resistance (castration-resistant PCa [CRPC]) after approximately 2–3 yr, with a poor prognosis. The molecular mechanisms underlying CRPC pro...
Autores principales: | , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062940/ https://www.ncbi.nlm.nih.gov/pubmed/24054872 http://dx.doi.org/10.1016/j.eururo.2013.08.011 |
_version_ | 1782321715425050624 |
---|---|
author | Rajan, Prabhakar Sudbery, Ian M. Villasevil, M. Eugenia M. Mui, Ernest Fleming, Janis Davis, Mark Ahmad, Imran Edwards, Joanne Sansom, Owen J. Sims, David Ponting, Chris P. Heger, Andreas McMenemin, Rhona M. Pedley, Ian D. Leung, Hing Y. |
author_facet | Rajan, Prabhakar Sudbery, Ian M. Villasevil, M. Eugenia M. Mui, Ernest Fleming, Janis Davis, Mark Ahmad, Imran Edwards, Joanne Sansom, Owen J. Sims, David Ponting, Chris P. Heger, Andreas McMenemin, Rhona M. Pedley, Ian D. Leung, Hing Y. |
author_sort | Rajan, Prabhakar |
collection | PubMed |
description | BACKGROUND: Androgen-deprivation therapy (ADT) is standard treatment for locally advanced or metastatic prostate cancer (PCa). Many patients develop castration resistance (castration-resistant PCa [CRPC]) after approximately 2–3 yr, with a poor prognosis. The molecular mechanisms underlying CRPC progression are unclear. OBJECTIVE: To undertake quantitative tumour transcriptome profiling prior to and following ADT to identify functionally important androgen-regulated pathways or genes that may be reactivated in CRPC. DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing (RNA-seq) was performed on tumour-rich, targeted prostatic biopsies from seven patients with locally advanced or metastatic PCa before and approximately 22 wk after ADT initiation. Differentially regulated genes were identified in treatment pairs and further investigated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on cell lines and immunohistochemistry on a separate CRPC patient cohort. Functional assays were used to determine the effect of pathway modulation on cell phenotypes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We searched for gene expression changes affecting key cell signalling pathways that may be targeted as proof of principle in a CRPC in vitro cell line model. RESULTS AND LIMITATIONS: We identified ADT-regulated signalling pathways, including the Wnt/β-catenin signalling pathway, and observed overexpression of β-catenin in a subset of CRPC by immunohistochemistry. We validated 6 of 12 (50%) pathway members by qRT-PCR on LNCaP/LNCaP-AI cell RNAs, of which 4 (67%) demonstrated expression changes consistent with RNA-seq data. We show that the tankyrase inhibitor XAV939 (which promotes β-catenin degradation) reduced androgen-independent LNCaP-AI cell line growth compared with androgen-responsive LNCaP cells via an accumulation of cell proportions in the G0/G1 phase and reduction in the S and G2/M phases. Our biopsy protocol did not account for tumour heterogeneity, and pathway inhibition was limited to pharmacologic approaches. CONCLUSIONS: RNA-seq of paired PCa samples revealed ADT-regulated signalling pathways. Proof-of-principle inhibition of the Wnt/β-catenin signalling pathway specifically delays androgen-independent PCa cell cycle progression and proliferation and warrants further investigation as a potential target for therapy for CRPC. |
format | Online Article Text |
id | pubmed-4062940 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | Elsevier Science |
record_format | MEDLINE/PubMed |
spelling | pubmed-40629402014-07-01 Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy Rajan, Prabhakar Sudbery, Ian M. Villasevil, M. Eugenia M. Mui, Ernest Fleming, Janis Davis, Mark Ahmad, Imran Edwards, Joanne Sansom, Owen J. Sims, David Ponting, Chris P. Heger, Andreas McMenemin, Rhona M. Pedley, Ian D. Leung, Hing Y. Eur Urol Platinum Priority – Prostate Cancer BACKGROUND: Androgen-deprivation therapy (ADT) is standard treatment for locally advanced or metastatic prostate cancer (PCa). Many patients develop castration resistance (castration-resistant PCa [CRPC]) after approximately 2–3 yr, with a poor prognosis. The molecular mechanisms underlying CRPC progression are unclear. OBJECTIVE: To undertake quantitative tumour transcriptome profiling prior to and following ADT to identify functionally important androgen-regulated pathways or genes that may be reactivated in CRPC. DESIGN, SETTING, AND PARTICIPANTS: RNA sequencing (RNA-seq) was performed on tumour-rich, targeted prostatic biopsies from seven patients with locally advanced or metastatic PCa before and approximately 22 wk after ADT initiation. Differentially regulated genes were identified in treatment pairs and further investigated by quantitative reverse transcription-polymerase chain reaction (qRT-PCR) on cell lines and immunohistochemistry on a separate CRPC patient cohort. Functional assays were used to determine the effect of pathway modulation on cell phenotypes. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS: We searched for gene expression changes affecting key cell signalling pathways that may be targeted as proof of principle in a CRPC in vitro cell line model. RESULTS AND LIMITATIONS: We identified ADT-regulated signalling pathways, including the Wnt/β-catenin signalling pathway, and observed overexpression of β-catenin in a subset of CRPC by immunohistochemistry. We validated 6 of 12 (50%) pathway members by qRT-PCR on LNCaP/LNCaP-AI cell RNAs, of which 4 (67%) demonstrated expression changes consistent with RNA-seq data. We show that the tankyrase inhibitor XAV939 (which promotes β-catenin degradation) reduced androgen-independent LNCaP-AI cell line growth compared with androgen-responsive LNCaP cells via an accumulation of cell proportions in the G0/G1 phase and reduction in the S and G2/M phases. Our biopsy protocol did not account for tumour heterogeneity, and pathway inhibition was limited to pharmacologic approaches. CONCLUSIONS: RNA-seq of paired PCa samples revealed ADT-regulated signalling pathways. Proof-of-principle inhibition of the Wnt/β-catenin signalling pathway specifically delays androgen-independent PCa cell cycle progression and proliferation and warrants further investigation as a potential target for therapy for CRPC. Elsevier Science 2014-07 /pmc/articles/PMC4062940/ /pubmed/24054872 http://dx.doi.org/10.1016/j.eururo.2013.08.011 Text en © 2013 European Association of Urology. Published by Elsevier B.V. All rights reserved. https://creativecommons.org/licenses/by-nc-nd/4.0/This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (https://creativecommons.org/licenses/by-nc-nd/4.0/) , which allows reusers to copy and distribute the material in any medium or format in unadapted form only, for noncommercial purposes only, and only so long as attribution is given to the creator. |
spellingShingle | Platinum Priority – Prostate Cancer Rajan, Prabhakar Sudbery, Ian M. Villasevil, M. Eugenia M. Mui, Ernest Fleming, Janis Davis, Mark Ahmad, Imran Edwards, Joanne Sansom, Owen J. Sims, David Ponting, Chris P. Heger, Andreas McMenemin, Rhona M. Pedley, Ian D. Leung, Hing Y. Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title | Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title_full | Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title_fullStr | Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title_full_unstemmed | Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title_short | Next-generation Sequencing of Advanced Prostate Cancer Treated with Androgen-deprivation Therapy |
title_sort | next-generation sequencing of advanced prostate cancer treated with androgen-deprivation therapy |
topic | Platinum Priority – Prostate Cancer |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4062940/ https://www.ncbi.nlm.nih.gov/pubmed/24054872 http://dx.doi.org/10.1016/j.eururo.2013.08.011 |
work_keys_str_mv | AT rajanprabhakar nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT sudberyianm nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT villasevilmeugeniam nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT muiernest nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT flemingjanis nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT davismark nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT ahmadimran nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT edwardsjoanne nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT sansomowenj nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT simsdavid nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT pontingchrisp nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT hegerandreas nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT mcmeneminrhonam nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT pedleyiand nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy AT leunghingy nextgenerationsequencingofadvancedprostatecancertreatedwithandrogendeprivationtherapy |