Cargando…
Robustly detecting differential expression in RNA sequencing data using observation weights
A popular approach for comparing gene expression levels between (replicated) conditions of RNA sequencing data relies on counting reads that map to features of interest. Within such count-based methods, many flexible and advanced statistical approaches now exist and offer the ability to adjust for c...
Autores principales: | Zhou, Xiaobei, Lindsay, Helen, Robinson, Mark D. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4066750/ https://www.ncbi.nlm.nih.gov/pubmed/24753412 http://dx.doi.org/10.1093/nar/gku310 |
Ejemplares similares
-
limma powers differential expression analyses for RNA-sequencing and microarray studies
por: Ritchie, Matthew E., et al.
Publicado: (2015) -
Detection and visualization of differential splicing in RNA-Seq data with JunctionSeq
por: Hartley, Stephen W., et al.
Publicado: (2016) -
Impulse model-based differential expression analysis of time course sequencing data
por: Fischer, David S, et al.
Publicado: (2018) -
Detection of differentially methylated regions from whole-genome bisulfite sequencing data without replicates
por: Wu, Hao, et al.
Publicado: (2015) -
Rapid, robust plasmid verification by de novo assembly of short sequencing reads
por: Gallegos, Jenna E, et al.
Publicado: (2020)