Cargando…
Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel
The transmembrane protein TMEM16A forms a Ca(2+)-activated Cl(−) channel that is permeable to many anions, including SCN(−), I(−), Br(−), Cl(−), and HCO(3)(−), and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be cri...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
The Rockefeller University Press
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076522/ https://www.ncbi.nlm.nih.gov/pubmed/24981232 http://dx.doi.org/10.1085/jgp.201411179 |
_version_ | 1782323498086039552 |
---|---|
author | Yu, Yawei Kuan, Ai-Seon Chen, Tsung-Yu |
author_facet | Yu, Yawei Kuan, Ai-Seon Chen, Tsung-Yu |
author_sort | Yu, Yawei |
collection | PubMed |
description | The transmembrane protein TMEM16A forms a Ca(2+)-activated Cl(−) channel that is permeable to many anions, including SCN(−), I(−), Br(−), Cl(−), and HCO(3)(−), and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca(2+)-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca(2+)] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both. |
format | Online Article Text |
id | pubmed-4076522 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | The Rockefeller University Press |
record_format | MEDLINE/PubMed |
spelling | pubmed-40765222015-01-01 Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel Yu, Yawei Kuan, Ai-Seon Chen, Tsung-Yu J Gen Physiol Communication The transmembrane protein TMEM16A forms a Ca(2+)-activated Cl(−) channel that is permeable to many anions, including SCN(−), I(−), Br(−), Cl(−), and HCO(3)(−), and has been implicated in various physiological functions. Indeed, controlling anion permeation through the TMEM16A channel pore may be critical in regulating the pH of exocrine fluids such as the pancreatic juice. The anion permeability of the TMEM16A channel pore has recently been reported to be modulated by Ca(2+)-calmodulin (CaCaM), such that the pore of the CaCaM-bound channel shows a reduced ability to discriminate between anions as measured by a shift of the reversal potential under bi-ionic conditions. Here, using a mouse TMEM16A clone that contains the two previously identified putative CaM-binding motifs, we were unable to demonstrate such CaCaM-dependent changes in the bi-ionic potential. We confirmed the activity of CaCaM used in our study by showing CaCaM modulation of the olfactory cyclic nucleotide–gated channel. We suspect that the different bi-ionic potentials that were obtained previously from whole-cell recordings in low and high intracellular [Ca(2+)] may result from different degrees of bi-ionic potential shift secondary to a series resistance problem, an ion accumulation effect, or both. The Rockefeller University Press 2014-07 /pmc/articles/PMC4076522/ /pubmed/24981232 http://dx.doi.org/10.1085/jgp.201411179 Text en © 2014 Yu et al. This article is distributed under the terms of an Attribution–Noncommercial–Share Alike–No Mirror Sites license for the first six months after the publication date (see http://www.rupress.org/terms). After six months it is available under a Creative Commons License (Attribution–Noncommercial–Share Alike 3.0 Unported license, as described at http://creativecommons.org/licenses/by-nc-sa/3.0/). |
spellingShingle | Communication Yu, Yawei Kuan, Ai-Seon Chen, Tsung-Yu Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title | Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title_full | Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title_fullStr | Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title_full_unstemmed | Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title_short | Calcium-calmodulin does not alter the anion permeability of the mouse TMEM16A calcium-activated chloride channel |
title_sort | calcium-calmodulin does not alter the anion permeability of the mouse tmem16a calcium-activated chloride channel |
topic | Communication |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4076522/ https://www.ncbi.nlm.nih.gov/pubmed/24981232 http://dx.doi.org/10.1085/jgp.201411179 |
work_keys_str_mv | AT yuyawei calciumcalmodulindoesnotaltertheanionpermeabilityofthemousetmem16acalciumactivatedchloridechannel AT kuanaiseon calciumcalmodulindoesnotaltertheanionpermeabilityofthemousetmem16acalciumactivatedchloridechannel AT chentsungyu calciumcalmodulindoesnotaltertheanionpermeabilityofthemousetmem16acalciumactivatedchloridechannel |