Cargando…
Conserved Prosegment Residues Stabilize a Late-Stage Folding Transition State of Pepsin Independently of Ground States
The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prose...
Autores principales: | , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4077824/ https://www.ncbi.nlm.nih.gov/pubmed/24983988 http://dx.doi.org/10.1371/journal.pone.0101339 |
Sumario: | The native folding of certain zymogen-derived enzymes is completely dependent upon a prosegment domain to stabilize the folding transition state, thereby catalyzing the folding reaction. Generally little is known about how the prosegment accomplishes this task. It was previously shown that the prosegment catalyzes a late-stage folding transition between a stable misfolded state and the native state of pepsin. In this study, the contributions of specific prosegment residues to catalyzing pepsin folding were investigated by introducing individual Ala substitutions and measuring the effects on the bimolecular folding reaction between the prosegment peptide and pepsin. The effects of mutations on the free energies of the individual misfolded and native ground states and the transition state were compared using measurements of prosegment-pepsin binding and folding kinetics. Five out of the seven prosegment residues examined yielded relatively large kinetic effects and minimal ground state perturbations upon mutation, findings which indicate that these residues form strengthened and/or non-native contacts in the transition state. These five residues are semi- to strictly conserved, while only a non-conserved residue had no kinetic effect. One conserved residue was shown to form native structure in the transition state. These results indicated that the prosegment, which is only 44 residues long, has evolved a high density of contacts that preferentially stabilize the folding transition state over the ground states. It is postulated that the prosegment forms extensive non-native contacts during the process of catalyzing correct inter- and intra-domain contacts during the final stages of folding. These results have implications for understanding the folding of multi-domain proteins and for the evolution of prosegment-catalyzed folding. |
---|