Cargando…

Comparative analysis of enzymatically produced novel linear DNA constructs with plasmids for use as DNA vaccines

The use of DNA to deliver vaccine antigens offers many advantages, including ease of manufacture and cost. However, most DNA vaccines are plasmids and must be grown in bacterial culture, necessitating elements which are either unnecessary for effective gene delivery (e.g. bacterial origins of replic...

Descripción completa

Detalles Bibliográficos
Autores principales: Walters, Adam A., Kinnear, Ekaterina, Shattock, Robin J., McDonald, Jacqueline U., Caproni, Lisa J., Porter, Neil, Tregoning, John S.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4082409/
https://www.ncbi.nlm.nih.gov/pubmed/24830436
http://dx.doi.org/10.1038/gt.2014.37
Descripción
Sumario:The use of DNA to deliver vaccine antigens offers many advantages, including ease of manufacture and cost. However, most DNA vaccines are plasmids and must be grown in bacterial culture, necessitating elements which are either unnecessary for effective gene delivery (e.g. bacterial origins of replication) or undesirable (e.g. antibiotic resistance genes). Removing these elements may improve the safety profile of DNA for the delivery of vaccines. Here we describe a novel, double-stranded, linear DNA construct produced by an enzymatic process that solely encodes an antigen expression cassette, comprising antigen, promoter, polyA tail and telomeric ends. We compared these constructs (called ‘Doggybones’ because of their shape) with conventional plasmid DNA. Using luciferase-expressing constructs, we demonstrated that expression levels were equivalent between Doggybones and plasmids both in vitro and in vivo. When mice were immunized with DNA constructs expressing the HIV envelope protein gp140, equivalent humoral and cellular responses were induced. Immunizations with either construct type expressing haemagluttinin were protective against H1N1 influenza challenge. This is the first example of an effective DNA vaccine which can be produced on a large scale by enzymatic processes.