Cargando…
The Targeted Transduction of MMP-Overexpressing Tumor Cells by ACPP-HPMA Copolymer-Coated Adenovirus Conjugates
We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5) particles into matrix metalloproteinase (MMP)-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP) was designed and attached to the reactive 4-nitrophenoxy groups of HPMA po...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085062/ https://www.ncbi.nlm.nih.gov/pubmed/25000246 http://dx.doi.org/10.1371/journal.pone.0100670 |
Sumario: | We have designed and tested a new way to selectively deliver HPMA polymer-coated adenovirus type 5 (Ad5) particles into matrix metalloproteinase (MMP)-overexpressing tumor cells. An activatable cell penetrating peptide (ACPP) was designed and attached to the reactive 4-nitrophenoxy groups of HPMA polymers by the C-terminal amino acid (asparagine, N). ACPPs are activatable cell penetrating peptides (CPPs) with a linker between polycationic and polyanionic domains, and MMP-mediated cleavage releases the CPP portion and its attached cargo to enable cell entry. Our data indicate that the transport of these HPMA polymer conjugates by a single ACPP molecule to the cytoplasm occurs via a nonendocytotic and concentration-independent process. The uptake was observed to finish within 20 minutes by inverted fluorescence microscopy. In contrast, HPMA polymer-coated Ad5 without ACPPs was internalized solely by endocytosis. The optimal formulation was not affected by the presence of Ad5 neutralizing antibodies during transduction, and ACPP/polymer-coated Ad5 also retained high targeting capability to several MMP-overexpressing tumor cell types. For the first time, ACPP-mediated cytoplasmic delivery of polymer-bound Ad5 to MMP-overexpressing tumor cells was demonstrated. These findings are significant, as they demonstrate the use of a polymer-based system for the targeted delivery into MMP-overexpressing solid tumors and highlight how to overcome major cellular obstacles to achieve intracellular macromolecular delivery. |
---|