Cargando…

Zn/Ga−DFO iron–chelating complex attenuates the inflammatory process in a mouse model of asthma

BACKGROUND: Redox-active iron, a catalyst in the production of hydroxyl radicals via the Fenton reaction, is one of the key participants in ROS-induced tissue injury and general inflammation. According to our recent findings, an excess of tissue iron is involved in several airway-related pathologies...

Descripción completa

Detalles Bibliográficos
Autores principales: Bibi, Haim, Vinokur, Vladimir, Waisman, Dan, Elenberg, Yigal, Landesberg, Amir, Faingersh, Anna, Yadid, Moran, Brod, Vera, Pesin, Jimy, Berenshtein, Eduard, Eliashar, Ron, Chevion, Mordechai
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Elsevier 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4085351/
https://www.ncbi.nlm.nih.gov/pubmed/25009783
http://dx.doi.org/10.1016/j.redox.2014.06.009
Descripción
Sumario:BACKGROUND: Redox-active iron, a catalyst in the production of hydroxyl radicals via the Fenton reaction, is one of the key participants in ROS-induced tissue injury and general inflammation. According to our recent findings, an excess of tissue iron is involved in several airway-related pathologies such as nasal polyposis and asthma. OBJECTIVE: To examine the anti-inflammatory properties of a newly developed specific iron–chelating complex, Zn/Ga−DFO, in a mouse model of asthma. MATERIALS AND METHODS: Asthma was induced in BALBc mice by ovalbumin, using aluminum hydroxide as an adjuvant. Mice were divided into four groups: (i) control, (ii) asthmatic and sham-treated, (iii) asthmatic treated with Zn/Ga−DFO [intra-peritoneally (i/p) and intra-nasally (i/n)], and (iv) asthmatic treated with Zn/Ga−DFO, i/n only. Lung histology and cytology were examined. Biochemical analysis of pulmonary levels of ferritin and iron-saturated ferritin was conducted. RESULTS: The amount of neutrophils and eosinophils in bronchoalveolar lavage fluid, goblet cell hyperplasia, mucus secretion, and peri-bronchial edema, showed markedly better values in both asthmatic-treated groups compared to the asthmatic non-treated group. The non-treated asthmatic group showed elevated ferritin levels, while in the two treated groups it returned to baseline levels. Interestingly, i/n-treatment demonstrated a more profound effect alone than in a combination with i/p injections. CONCLUSION: In this mouse model of allergic asthma, Zn/Ga−DFO attenuated allergic airway inflammation. The beneficial effects of treatment were in accord with iron overload abatement in asthmatic lungs by Zn/Ga−DFO. The findings in both cellular and tissue levels supported the existence of a significant anti-inflammatory effect of Zn/Ga−DFO.