Cargando…
Mechanistic Studies of Protein Arginine Deiminase 2: Evidence for a Substrate-Assisted Mechanism
[Image: see text] Citrullination, which is catalyzed by protein arginine deiminases (PADs 1–4 and 6), is a post-translational modification (PTM) that effectively neutralizes the positive charge of a guanidinium group by its replacement with a neutral urea. Given the sequence similarity of PAD2 acros...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2014
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100781/ https://www.ncbi.nlm.nih.gov/pubmed/24989433 http://dx.doi.org/10.1021/bi500554b |
_version_ | 1782326709891104768 |
---|---|
author | Dreyton, Christina J. Knuckley, Bryan Jones, Justin E. Lewallen, Daniel M. Thompson, Paul R. |
author_facet | Dreyton, Christina J. Knuckley, Bryan Jones, Justin E. Lewallen, Daniel M. Thompson, Paul R. |
author_sort | Dreyton, Christina J. |
collection | PubMed |
description | [Image: see text] Citrullination, which is catalyzed by protein arginine deiminases (PADs 1–4 and 6), is a post-translational modification (PTM) that effectively neutralizes the positive charge of a guanidinium group by its replacement with a neutral urea. Given the sequence similarity of PAD2 across mammalian species and the genomic organization of the PAD2 gene, PAD2 is predicted to be the ancestral homologue of the PADs. Although PAD2 has long been known to play a role in myelination, it has only recently been linked to other cellular processes, including gene transcription and macrophage extracellular trap formation. For example, PAD2 deiminates histone H3 at R26, and this PTM leads to the increased transcription of more than 200 genes under the control of the estrogen receptor. Given that our understanding of PAD2 biology remains incomplete, we initiated mechanistic studies on this enzyme to aid the development of PAD2-specific inhibitors. Herein, we report that the substrate specificity and calcium dependence of PAD2 are similar to those of PADs 1, 3, and 4. However, unlike those isozymes, PAD2 appears to use a substrate-assisted mechanism of catalysis in which the positively charged substrate guanidinium depresses the pK(a) of the nucleophilic cysteine. By contrast, PADs 1, 3, and 4 use a reverse-protonation mechanism. These mechanistic differences will aid the development of isozyme-specific inhibitors. |
format | Online Article Text |
id | pubmed-4100781 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2014 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-41007812015-07-03 Mechanistic Studies of Protein Arginine Deiminase 2: Evidence for a Substrate-Assisted Mechanism Dreyton, Christina J. Knuckley, Bryan Jones, Justin E. Lewallen, Daniel M. Thompson, Paul R. Biochemistry [Image: see text] Citrullination, which is catalyzed by protein arginine deiminases (PADs 1–4 and 6), is a post-translational modification (PTM) that effectively neutralizes the positive charge of a guanidinium group by its replacement with a neutral urea. Given the sequence similarity of PAD2 across mammalian species and the genomic organization of the PAD2 gene, PAD2 is predicted to be the ancestral homologue of the PADs. Although PAD2 has long been known to play a role in myelination, it has only recently been linked to other cellular processes, including gene transcription and macrophage extracellular trap formation. For example, PAD2 deiminates histone H3 at R26, and this PTM leads to the increased transcription of more than 200 genes under the control of the estrogen receptor. Given that our understanding of PAD2 biology remains incomplete, we initiated mechanistic studies on this enzyme to aid the development of PAD2-specific inhibitors. Herein, we report that the substrate specificity and calcium dependence of PAD2 are similar to those of PADs 1, 3, and 4. However, unlike those isozymes, PAD2 appears to use a substrate-assisted mechanism of catalysis in which the positively charged substrate guanidinium depresses the pK(a) of the nucleophilic cysteine. By contrast, PADs 1, 3, and 4 use a reverse-protonation mechanism. These mechanistic differences will aid the development of isozyme-specific inhibitors. American Chemical Society 2014-07-03 2014-07-15 /pmc/articles/PMC4100781/ /pubmed/24989433 http://dx.doi.org/10.1021/bi500554b Text en Copyright © 2014 American Chemical Society Terms of Use (http://pubs.acs.org/page/policy/authorchoice_termsofuse.html) |
spellingShingle | Dreyton, Christina J. Knuckley, Bryan Jones, Justin E. Lewallen, Daniel M. Thompson, Paul R. Mechanistic Studies of Protein Arginine Deiminase 2: Evidence for a Substrate-Assisted Mechanism |
title | Mechanistic Studies of Protein Arginine Deiminase
2: Evidence for a Substrate-Assisted Mechanism |
title_full | Mechanistic Studies of Protein Arginine Deiminase
2: Evidence for a Substrate-Assisted Mechanism |
title_fullStr | Mechanistic Studies of Protein Arginine Deiminase
2: Evidence for a Substrate-Assisted Mechanism |
title_full_unstemmed | Mechanistic Studies of Protein Arginine Deiminase
2: Evidence for a Substrate-Assisted Mechanism |
title_short | Mechanistic Studies of Protein Arginine Deiminase
2: Evidence for a Substrate-Assisted Mechanism |
title_sort | mechanistic studies of protein arginine deiminase
2: evidence for a substrate-assisted mechanism |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4100781/ https://www.ncbi.nlm.nih.gov/pubmed/24989433 http://dx.doi.org/10.1021/bi500554b |
work_keys_str_mv | AT dreytonchristinaj mechanisticstudiesofproteinargininedeiminase2evidenceforasubstrateassistedmechanism AT knuckleybryan mechanisticstudiesofproteinargininedeiminase2evidenceforasubstrateassistedmechanism AT jonesjustine mechanisticstudiesofproteinargininedeiminase2evidenceforasubstrateassistedmechanism AT lewallendanielm mechanisticstudiesofproteinargininedeiminase2evidenceforasubstrateassistedmechanism AT thompsonpaulr mechanisticstudiesofproteinargininedeiminase2evidenceforasubstrateassistedmechanism |