Cargando…
Modeling Bi-modality Improves Characterization of Cell Cycle on Gene Expression in Single Cells
Advances in high-throughput, single cell gene expression are allowing interrogation of cell heterogeneity. However, there is concern that the cell cycle phase of a cell might bias characterizations of gene expression at the single-cell level. We assess the effect of cell cycle phase on gene expressi...
Autores principales: | McDavid, Andrew, Dennis, Lucas, Danaher, Patrick, Finak, Greg, Krouse, Michael, Wang, Alice, Webster, Philippa, Beechem, Joseph, Gottardo, Raphael |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Public Library of Science
2014
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4102402/ https://www.ncbi.nlm.nih.gov/pubmed/25032992 http://dx.doi.org/10.1371/journal.pcbi.1003696 |
Ejemplares similares
-
Data exploration, quality control and testing in single-cell qPCR-based gene expression experiments
por: McDavid, Andrew, et al.
Publicado: (2013) -
An information theoretic approach to detecting spatially varying genes
por: Jones, Daniel C., et al.
Publicado: (2023) -
Merging Mixture Components for Cell Population Identification in Flow Cytometry
por: Finak, Greg, et al.
Publicado: (2009) -
MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data
por: Finak, Greg, et al.
Publicado: (2015) -
CytoML for cross‐platform cytometry data sharing
por: Finak, Greg, et al.
Publicado: (2018)