Cargando…

Apoptotic Lymphocytes of H. sapiens Lose Nucleosomes in GC-Rich Promoters

We analyzed two sets of human CD4(+) nucleosomal DNA directly sequenced by Illumina (Solexa) high throughput sequencing method. The first set has ∼40 M sequences and was produced from the normal CD4+ T lymphocytes by micrococcal nuclease. The second set has ∼44 M sequences and was obtained from peri...

Descripción completa

Detalles Bibliográficos
Autores principales: Hosid, Sergey, Ioshikhes, Ilya
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Public Library of Science 2014
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4117428/
https://www.ncbi.nlm.nih.gov/pubmed/25077608
http://dx.doi.org/10.1371/journal.pcbi.1003760
Descripción
Sumario:We analyzed two sets of human CD4(+) nucleosomal DNA directly sequenced by Illumina (Solexa) high throughput sequencing method. The first set has ∼40 M sequences and was produced from the normal CD4+ T lymphocytes by micrococcal nuclease. The second set has ∼44 M sequences and was obtained from peripheral blood lymphocytes by apoptotic nucleases. The different nucleosome sets showed similar dinucleotide positioning AA/TT, GG/CC, and RR/YY (R is purine, Y - pyrimidine) patterns with periods of 10–10.4 bp. Peaks of GG/CC and AA/TT patterns were shifted by 5 bp from each other. Two types of promoters in H. sapiens: AT and GC-rich were identified. AT-rich promoters in apoptotic cell had +1 nucleosome shifts 50–60 bp downstream from those in normal lymphocytes. GC-rich promoters in apoptotic cells lost 80% of nucleosomes around transcription start sites as well as in total DNA. Nucleosome positioning was predicted by combination of {AA, TT}, {GG, CC}, {WW, SS} and {RR, YY} patterns. In our study we found that the combinations of {AA, TT} and {GG, CC} provide the best results and successfully mapped 33% of nucleosomes 147 bp long with precision ±15 bp (only 31/147 or 21% is expected).